首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22561篇
  免费   3635篇
  国内免费   6118篇
测绘学   2819篇
大气科学   4769篇
地球物理   4952篇
地质学   9138篇
海洋学   3868篇
天文学   1419篇
综合类   1897篇
自然地理   3452篇
  2024年   78篇
  2023年   274篇
  2022年   774篇
  2021年   911篇
  2020年   1074篇
  2019年   1325篇
  2018年   947篇
  2017年   1088篇
  2016年   1120篇
  2015年   1327篇
  2014年   1341篇
  2013年   1604篇
  2012年   1422篇
  2011年   1500篇
  2010年   1207篇
  2009年   1407篇
  2008年   1537篇
  2007年   1739篇
  2006年   1702篇
  2005年   1416篇
  2004年   1220篇
  2003年   1021篇
  2002年   927篇
  2001年   704篇
  2000年   810篇
  1999年   771篇
  1998年   626篇
  1997年   469篇
  1996年   387篇
  1995年   298篇
  1994年   270篇
  1993年   231篇
  1992年   200篇
  1991年   128篇
  1990年   79篇
  1989年   106篇
  1988年   67篇
  1987年   50篇
  1986年   36篇
  1985年   31篇
  1984年   24篇
  1983年   14篇
  1982年   20篇
  1981年   7篇
  1980年   4篇
  1979年   3篇
  1978年   5篇
  1977年   4篇
  1954年   5篇
  1877年   1篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
861.
The root‐zone moisture replenishment mechanisms are key unknowns required to understand soil hydrological processes and water sources used by plants. Temporal patterns of root‐zone moisture replenishment reflect wetting events that contribute to plant growth and survival and to catchment water yield. In this study, stable oxygen and hydrogen isotopes of twigs and throughfall were continuously monitored to characterize the seasonal variations of the root‐zone moisture replenishment in a native vegetated catchment under Mediterranean climate in South Australia. The two studied hillslopes (the north‐facing slope [NFS] and the south‐facing slope [SFS]) had different environmental conditions with opposite aspects. The twig and throughfall samples were collected every ~20 days over 1 year on both hillslopes. The root‐zone moisture replenishment, defined as percentage of newly replenished root‐zone moisture as a complement to antecedent moisture for plant use, calculated by an isotope balance model, was about zero (±25% for the NFS and ± 15% for the SFS) at the end of the wet season (October), increased to almost 100% (±26% for the NFS and ± 29% for the SFS) after the dry season (April and May), then decreased close to zero (±24% for the NFS and ± 28% for the SFS) in the middle of the following wet season (August). This seasonal pattern of root‐zone moisture replenishment suggests that the very first rainfall events of the wet season were significant for soil moisture replenishment and supported the plants over wet and subsequent dry seasons, and that NFS completed replenishment over a longer time than SFS in the wet season and depleted the root zone moisture quicker in the dry season. The stable oxygen isotope composition of the intraevent samples and twigs further confirms that rain water in the late wet season contributed little to root‐zone moisture. This study highlights the significant role of the very first rain events in the early wet season for ecosystem and provides insights to understanding ecohydrological separation, catchment water yield, and vegetation response to climate changes.  相似文献   
862.
In this article, a new constitutive model for soils is proposed. It is formulated by means of plasticity, but in contrast to the precedent works, it presents a yield function describing a surface within the intergranular strain space. This latter is a state variable providing information of the recent strain history. An expression for the plastic strain rate has been proposed to guarantee the stress rate continuity. Under the application of medium or large strain amplitudes, the constitutive equation becomes independent of the intergranular strain and delivers a mathematical structure similar to some Karlsruhe hypoplastic models. Some simulations of monotonic and cyclic triaxial test are provided to evaluate and analyze the model performance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
863.
The most popular practice for analysing nonstationarity of flood series is to use a fixed single‐type probability distribution incorporated with the time‐varying moments. However, the type of probability distribution could be both complex because of distinct flood populations and time‐varying under changing environments. To allow the investigation of this complex nature, the time‐varying two‐component mixture distributions (TTMD) method is proposed in this study by considering the time variations of not only the moments of its component distributions but also the weighting coefficients. Having identified the existence of mixed flood populations based on circular statistics, the proposed TTMD was applied to model the annual maximum flood series of two stations in the Weihe River basin, with the model parameters calibrated by the meta‐heuristic maximum likelihood method. The performance of TTMD was evaluated by different diagnostic plots and indexes and compared with stationary single‐type distributions, stationary mixture distributions and time‐varying single‐type distributions. The results highlighted the advantages of TTMD with physically‐based covariates for both stations. Besides, the optimal TTMD models were considered to be capable of settling the issue of nonstationarity and capturing the mixed flood populations satisfactorily. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
864.
865.
Surface soil moisture (SSM) is a critical variable for understanding water and energy flux between the atmosphere and the Earth's surface. An easy to apply algorithm for deriving SSM time series that primarily uses temporal parameters derived from simulated and in situ datasets has recently been reported. This algorithm must be assessed for different biophysical and atmospheric conditions by using actual geostationary satellite images. In this study, two currently available coarse‐scale SSM datasets (microwave and reanalysis product) and aggregated in situ SSM measurements were implemented to calibrate the time‐invariable coefficients of the SSM retrieval algorithm for conditions in which conventional observations are rare. These coefficients were subsequently used to obtain SSM time series directly from Meteosat Second Generation (MSG) images over the study area of a well‐organized soil moisture network named REMEDHUS in Spain. The results show a high degree of consistency between the estimated and actual SSM time series values when using the three SSM dataset‐calibrated time‐invariable coefficients to retrieve SSM, with coefficients of determination (R2) varying from 0.304 to 0.534 and root mean square errors ranging from 0.020 m3/m3 to 0.029 m3/m3. Further evaluation with different land use types results in acceptable debiased root mean square errors between 0.021 m3/m3 and 0.048 m3/m3 when comparing the estimated MSG pixel‐scale SSM with in situ measurements. These results indicate that the investigated method is practical for deriving time‐invariable coefficients when using publicly accessed coarse‐scale SSM datasets, which is beneficial for generating continuous SSM dataset at the MSG pixel scale.  相似文献   
866.
Agricultural suitability maps are a key input for land use zoning and projections of cropland expansion. Suitability assessments typically consider edaphic conditions, climate, crop characteristics, and sometimes incorporate accessibility to transportation and market infrastructure. However, correct weighting among these disparate factors is challenging, given rapid development of new crop varieties, irrigation, and road networks, as well as changing global demand for agricultural commodities. Here, we compared three independent assessments of cropland suitability to spatial and temporal dynamics of agricultural expansion in the Brazilian state of Mato Grosso during 2001–2012. We found that areas of recent cropland expansion identified using satellite data were generally designated as low to moderate suitability for rainfed crop production. Our analysis highlighted the abrupt nature of suitability boundaries, rather than smooth gradients of agricultural potential, with little additional cropland expansion beyond the extent of the flattest areas (0–2% slope). Satellite-based estimates of the interannual variability in the use of existing crop areas also provided an alternate means to assess suitability. On average, cropland areas in the Cerrado biome had higher utilization (84%) than croplands in the Amazon region of northern Mato Grosso (74%). Areas of more recent expansion had lower utilization than croplands established before 2002, providing empirical evidence for lower suitability or alternative management strategies (e.g., pasture–soya rotations) for lands undergoing more recent land use transitions. This unplanted reserve constitutes a large area of potentially available cropland (PAC) without further expansion, within the management limits imposed for pest management and fallow cycles. Using two key constraints on future cropland expansion, slope and restrictions on further deforestation of Amazon or Cerrado vegetation, we found little available flat land for further legal expansion of crop production in Mato Grosso. Dynamics of cropland expansion from more than a decade of satellite observations indicated narrow ranges of suitability criteria, restricting PAC under current policy conditions, and emphasizing the advantages of field-scale information to assess suitability and utilization.  相似文献   
867.
This paper describes how measurements of the movement of identifiable features at the edge of a turbulent plume can be interpreted to determine the properties of the mean flow and consequently, using plume theory, can be used to make estimates of the fluxes of volume (mass), momentum, and buoyancy in a plume. This means that video recordings of smoke rising from a chimney or buoyant material from a source on the sea bed can be used to make accurate estimates of the source conditions for the plume. At best we can estimate the volume flux and buoyancy flux to within about 5% and 15% of the actual values, respectively. Although this is restricted to the case of a plume rising in a stationary and unstratified environment, we show that the results may be of practical use in other more complex situations. In addition, we demonstrate that large-scale (turbulent) coherent structures at the plume edge form on a scale approximately 40% of the local (mean) plume half-width and travel at almost 60% of the average local (mean) velocity in the plume.  相似文献   
868.
A Lagrangian particle‐based method, smooth particle hydrodynamics (SPH), is used in this paper to model the flow of self‐compacting concretes (SCC) with or without short steel fibres. An incompressible SPH method is presented to simulate the flow of such non‐Newtonian fluids whose behaviour is described by a Bingham‐type model, in which the kink in the shear stress vs shear strain rate diagram is first appropriately smoothed out. The viscosity of the SCC is predicted from the measured viscosity of the paste using micromechanical models in which the second phase aggregates are treated as rigid spheres and the short steel fibres as slender rigid bodies. The basic equations solved in the SPH are the incompressible mass conservation and Navier–Stokes equations. The solution procedure uses prediction–correction fractional steps with the temporal velocity field integrated forward in time without enforcing incompressibility in the prediction step. The resulting temporal velocity field is then implicitly projected on to a divergence‐free space to satisfy incompressibility through a pressure Poisson equation derived from an approximate pressure projection. The results of the numerical simulation are benchmarked against actual slump tests carried out in the laboratory. The numerical results are in excellent agreement with test results, thus demonstrating the capability of SPH and a proper rheological model to predict SCC flow and mould‐filling behaviour. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
869.
The dynamic response of an end bearing pile embedded in a linear visco‐elastic soil layer with hysteretic type damping is theoretically investigated when the pile is subjected to a time‐harmonic vertical loading at the pile top. The soil is modeled as a three‐dimensional axisymmetric continuum in which both its radial and vertical displacements are taken into account. The pile is assumed to be vertical, elastic and of uniform circular cross section. By using two potential functions to decompose the displacements of the soil layer and utilizing the separation of variables technique, the dynamic equilibrium equation is uncoupled and solved. At the interface of soil‐pile system, the boundary conditions of displacement continuity and force equilibrium are invoked to derive a closed‐form solution of the vertical dynamic response of the pile in frequency domain. The corresponding inverted solutions in time domain for the velocity response of a pile subjected to a semi‐sine excitation force applied at the pile top are obtained by means of inverse Fourier transform and the convolution theorem. A comparison with two other simplified solutions has been performed to verify the more rigorous solutions presented in this paper. Using the developed solutions, a parametric study has also been conducted to investigate the influence of the major parameters of the soil‐pile system on the vertical vibration characteristics of the pile. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
870.
利用Savitzky-Golay滤波对覆盖江西省范围的SPOT VGT NDVI时间序列数据进行平滑处理的基础上,结合坡度数据,通过非监督分类的方法提取了江西省2000、2005和2010年水稻种植范围,并根据NDVI的年内动态变化,从水稻种植范围、水稻生长季起始时间、水稻复种指数和NDVI最大振幅等分析了江西省水稻种植和生长情况,探讨2000~2010年江西省水稻生产的变化。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号