首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1537篇
  免费   333篇
  国内免费   612篇
测绘学   10篇
大气科学   2篇
地球物理   198篇
地质学   2066篇
海洋学   68篇
天文学   1篇
综合类   88篇
自然地理   49篇
  2024年   8篇
  2023年   34篇
  2022年   62篇
  2021年   76篇
  2020年   75篇
  2019年   96篇
  2018年   95篇
  2017年   81篇
  2016年   116篇
  2015年   105篇
  2014年   101篇
  2013年   97篇
  2012年   119篇
  2011年   124篇
  2010年   100篇
  2009年   90篇
  2008年   91篇
  2007年   120篇
  2006年   92篇
  2005年   97篇
  2004年   78篇
  2003年   88篇
  2002年   80篇
  2001年   56篇
  2000年   62篇
  1999年   56篇
  1998年   43篇
  1997年   49篇
  1996年   41篇
  1995年   23篇
  1994年   31篇
  1993年   25篇
  1992年   16篇
  1991年   17篇
  1990年   7篇
  1989年   10篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   5篇
  1984年   2篇
  1981年   1篇
  1979年   2篇
  1954年   3篇
排序方式: 共有2482条查询结果,搜索用时 23 毫秒
71.
Long‐term weathering of a quartz chlorite schist via wetting and drying was studied under a simulated tropical climate. Cubic rock samples (15 mm × 15 mm × 15 mm) were cut from larger rocks and subjected to time‐compressed climatic conditions simulating the tropical wet season climate at the Ranger Uranium Mine in the Northern Territory, Australia. Fragmentation, moisture content and moisture uptake rate were monitored over 5000 cycles of wetting and drying. To determine the impact of climatic variables, five climatic regimes were simulated, varying water application, temperature and drying. One of the climatic regimes reproduced observed temperature and moisture variability at the Ranger Uranium Mine, but over a compressed time scale. It is shown that wetting and drying is capable of weathering quartz chlorite schist with changes expected over a real time period of decades. While wetting and drying alone does produce changes to rock morphology, the incorporation of temperature variation further enhances weathering rates. Although little fragmentation occurred in experiments, significant changes to internal pore structure were observed, which could potentially enhance other weathering mechanisms. Moisture variability is shown to lead to higher weathering rates than are observed when samples are subjected only to leaching. Finally, experiments were conducted on two rock samples from the same source having only subtle differences in mineralogy. The samples exhibited quite different weathering rates leading to the conclusion that our knowledge of the role of rock type and composition in weathering is insufficient for the accurate determination of weathering rates. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
72.
砂质岩的孔隙和喉道被网格状粘土矿物和次生加大矿物充填成微细孔喉状结构时,形成具有较高毛细管压力的致密砂岩。它与地层水发生水锁效应,可大大降低渗透率,成为致密砂岩盖层。当含水饱和度在50%以下时,束缚水饱和度比较低,致密砂岩储层可以产气;当含水饱和度在50%~90%区间时,具有较高的束缚水饱和度,相对渗透率非常低,它既不能产气也不能产水,反映为渗透率瓶颈区(具有盖层性质);当含水饱和度大于90%以上时,致密砂岩储层仅微量产水。塔里木盆地英南2井侏罗系气藏盖层由致密砂岩构成,不含水时的气体渗透率在(0.027~0.081)×10-3μm2,不能构成封堵;当含水饱和度达到60%以上时,相对渗透率几乎为零,构成有效盖层。  相似文献   
73.
Shape, size and orientation measurements of quartz grains sampled along two transects that cross zones of increasing metamorphic grade in the Otago Schist, New Zealand, reveal the role of quartz in the progressive development of metamorphic foliation. Sedimentary compaction and diagenesis contributed little to the formation of a shape‐preferred orientation (SPO) within the analysed samples. Metamorphic foliation was initiated at sub‐greenschist facies conditions as part of a composite S1‐bedding structure parallel to the axial planes of tight to isoclinal F1 folds. An important component of this foliation is a pronounced quartz SPO that formed dominantly by the effect of dissolution–precipitation creep on detrital grains in association with F1 strain. With increasing grade, the following trends are evident from the SPO data: (i) a progressive increase in the aspect ratio of grains in sections parallel to lineation, and the development of blade‐shaped grains; (ii) the early development of a strong shape preferred orientation so that blade lengths define the linear aspect of the foliation (lineation) and the intermediate axes of the blades define a partial girdle about the lineation; (iii) a slight thinning and reduction in volume of grains in the one transect; and (iv) an actual increase in thickness and volume in the survivor grains of the second transect. The highest‐grade samples, within the chlorite zone of the greenschist facies, record segregation into quartz‐ and mica‐rich layers. This segregation resulted largely from F2 crenulation and marks a key change in the distribution, deformation and SPO of the quartz grains. The contribution of quartz SPO to defining the foliation lessens as the previously discrete and aligned detrital quartz grains are replaced by aggregates and layers of dynamically recrystallized quartz grains of reduced aspect ratio and reduced alignment. Pressure solution now affects the margins of quartz‐rich layers rather than individual grains. In higher‐grade samples, therefore, the rock structure is characterized increasingly by segregation layering parallel to a foliation defined predominantly by mica SPO.  相似文献   
74.
Abstract. Scanning electron microscopy-cathodoluminescence (SEM-CL) imaging of vein quartz in the Cu-mineralised, Shuteen Complex (South Gobi, Mongolia) has revealed a complex history of crystal growth, dissolution and microfracture healing, associated with several hydrothermal events that could not be detected using other observational techniques (e.g. transmitted/reflected light microscopy, back-scattered electron imaging, or secondary electron imaging).
The quartz initially grew as CL-bright/grey crystals in a 345±30C liquid reservoir, as inferred by the analysis of primary liquid fluid inclusions (average Th of 343C; 6.6∼7.7 wt% NaCleq). Quartz precipitation occurred at the edge of the crystals as reservoir fluids cooled to 260±25C, as indicated by micron-scale CL-dark/CL-bright quartz growth bands containing abundant fluid inclusions (with an average Th values of 261C). Pressure fluctuations were the likely cause of dissolution, as SEM-CL imaging reveals the quartz have corroded or rounded crystal edges, and precipitation of later quartz into open space. SEM-CL imaging shows the quartz contains healed microfractures that trapped low salinity fluids (3.9 wt% NaC1eq) with Th values of 173±15C.
SEM-CL imaging provides a means of deciphering the thermal and chemical evolution of the fossil Shuteen hydrothermal system, and the nature of hydrothermal quartz vein-forming processes, by facilitating the correlation of distinct fluid inclusion populations and their relative chronology, with specific hydrothermal events.  相似文献   
75.
76.
解古巍  周传明 《地层学杂志》2005,29(B11):450-453,i0001
华北蓟县系上部洪水庄组和铁岭组之间长期以来一直被认为是整合接触。近期在蓟县小岭子剖面发现洪水庄组顶部发育铁质风化壳,铁岭组底部有硅质褐铁矿屑砂岩,从而证明洪水庄组与铁岭组之间存在一次强烈的风化剥蚀,二者之间是假整合接触关系。  相似文献   
77.
This paper describes the influence of siliceous and iron-rich calcic low-temperature hydrothermal fluids (LTHF) on the mineralogy and geochemistry of the Late Permian No. 11 Coal (anthracitic, Rr=2.85%) in the Dafang Coalfield in northwestern Guizhou Province, China. The No. 11 Coal has high contents of vein ankerite (10.2 vol.%) and vein quartz (11.4 vol.%), with formation temperatures of 85 and 180 °C, respectively, indicating that vein ankerite and vein quartz were derived from low-temperature calcic and siliceous hydrothermal fluids in two epigenetic episodes. The vein quartz appears to have formed earlier than vein ankerite did, and at least three distinct stages of ankerite formation with different Ca/Sr and Fe/Mn ratios were observed.The two types of mineral veins are sources of different suites of major and trace metals. Scanning electron microscope and sequential extraction studies show that, in addition to Fe, Mg, and Ca, vein ankerite is the dominant source of Mn, Cu, Ni, Pb, and Zn in the coal, and the contents of these five elements are as high as 0.09% and 74.0, 33.6, 185, and 289 μg/g, respectively. In contrast, vein quartz is the main carrier mineral for platinum-group elements (PGEs) Pd, Pt, and Ir in the coal, and the contents of Pd, Pt, and Ir are 1.57, 0.15, and 0.007 μg/g, respectively. Sequential extraction showed a high PGE content in the silicate fraction, up to 10.4 μg/g Pd, 1.23 μg/g Pt, and 0.05 μg/g Ir, respectively. It is concluded that the formation of ankerite and quartz and the anomalous enrichment of trace elements in the No. 11 Coal in the Dafang Coalfield, Guizhou, result from the influx of calcic and siliceous low-temperature hydrothermal fluids.  相似文献   
78.
Composite granite–quartz veins occur in retrogressed ultrahigh pressure (UHP) eclogite enclosed in gneiss at General's Hill in the central Sulu belt, eastern China. The granite in the veins has a high‐pressure (HP) mineral assemblage of dominantly quartz+phengite+allanite/epidote+garnet that yields pressures of 2.5–2.1 GPa (Si‐in‐phengite barometry) and temperatures of 850–780°C (Ti‐in‐zircon thermometry) at 2.5 GPa (~20°C lower at 2.1 GPa). Zircon overgrowths on inherited cores and new grains of zircon from both components of the composite veins crystallized at c. 221 Ma. This age overlaps the timing of HP retrograde recrystallization dated at 225–215 Ma from multiple localities in the Sulu belt, consistent with the HP conditions retrieved from the granite. The εHf(t) values of new zircon from both components of the composite veins and the Sr–Nd isotope compositions of the granite consistently lie between values for gneiss and eclogite, whereas δ18O values of new zircon are similar in the veins and the crustal rocks. These data are consistent with zircon growth from a blended fluid generated internally within the gneiss and the eclogite, without any ingress of fluid from an external source. However, at the peak metamorphic pressure, which could have reached 7 GPa, the rocks were likely fluid absent. During initial exhumation under UHP conditions, exsolution of H2O from nominally anhydrous minerals generated a grain boundary supercritical fluid in both gneiss and eclogite. As exhumation progressed, the volume of fluid increased allowing it to migrate by diffusing porous flow from grain boundaries into channels and drain from the dominant gneiss through the subordinate eclogite. This produced a blended fluid intermediate in its isotope composition between the two end‐members, as recorded by the composite veins. During exhumation from UHP (coesite) eclogite to HP (quartz) eclogite facies conditions, the supercritical fluid evolved by dissolution of the silicate mineral matrix, becoming increasingly solute‐rich, more ‘granitic’ and more viscous until it became trapped. As crystallization began by diffusive loss of H2O to the host eclogite concomitant with ongoing exhumation of the crust, the trapped supercritical fluid intersected the solvus for the granite–H2O system, allowing phase separation and formation of the composite granite–quartz veins. Subsequently, during the transition from HP eclogite to amphibolite facies conditions, minor phengite breakdown melting is recorded in both the granite and the gneiss by K‐feldspar+plagioclase+biotite aggregates located around phengite and by K‐feldspar veinlets along grain boundaries. Phase equilibria modelling of the granite indicates that this late‐stage melting records P–T conditions towards the end of the exhumation, with the subsolidus assemblage yielding 0.7–1.1 GPa at <670°C. Thus, the composite granite–quartz veins represent a rare example of a natural system recording how the fluid phase evolved during exhumation of continental crust. The successive availability of different fluid phases attending retrograde metamorphism from UHP eclogite to amphibolite facies conditions will affect the transport of trace elements through the continental crust and the role of these fluids as metasomatic agents interacting with the mantle wedge in the subduction channel.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号