首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1531篇
  免费   184篇
  国内免费   302篇
测绘学   26篇
大气科学   148篇
地球物理   431篇
地质学   495篇
海洋学   577篇
天文学   6篇
综合类   88篇
自然地理   246篇
  2024年   6篇
  2023年   33篇
  2022年   56篇
  2021年   67篇
  2020年   64篇
  2019年   104篇
  2018年   51篇
  2017年   56篇
  2016年   64篇
  2015年   72篇
  2014年   102篇
  2013年   107篇
  2012年   79篇
  2011年   78篇
  2010年   92篇
  2009年   76篇
  2008年   88篇
  2007年   69篇
  2006年   85篇
  2005年   86篇
  2004年   78篇
  2003年   52篇
  2002年   70篇
  2001年   49篇
  2000年   36篇
  1999年   40篇
  1998年   45篇
  1997年   33篇
  1996年   31篇
  1995年   15篇
  1994年   8篇
  1993年   17篇
  1992年   5篇
  1991年   9篇
  1990年   6篇
  1989年   3篇
  1988年   10篇
  1987年   5篇
  1986年   8篇
  1985年   20篇
  1984年   11篇
  1983年   15篇
  1982年   6篇
  1981年   7篇
  1980年   1篇
  1978年   2篇
排序方式: 共有2017条查询结果,搜索用时 31 毫秒
91.
Theoretical and experimental aspects of the production, transformation, diffusion and loss of N2 in the upper atmosphere are considered. The N2-CO2 near-resonant system in theD andE regions is taken into account. We describe our understanding of the methods necessary to find the vibrational populations of N2 and CO2 (asymmetric mode of CO2). The calculations of the vibrational temperatures in theD, E, andF regions for the mid-latitude ionosphere and an aurora are presented. The connection between the excited species and the 4.26-m radiation intensities is considered. The models for the rate coefficient of the reaction of O+ with N2 and the electron density decrease resulting from N2 in the F region are discussed.  相似文献   
92.
Regression results based on data from 46 northern temperate lakes show that total phosphorus (TP) is the best predictor for phytoplankton (as chl-a) at lower trophic levels, TP < 200 mg · m–3. A regression including both TP and TN as regressors is the best predictor for lakes with TP > 200 mg · m–3. However, the good correlation is probably due to a high correlation between lake average chl-a (all years observed) and lake average TP and TN. Within single hypereutrophic lakes, TN alone is the best predictor. It was not possible to identify a medium trophic domain where TN and TP in combination was the best predictor for chl-a. The ratio TN:TP in the water decreases from about 40 to about 5 with increasing trophic level. Optimum TN:TP ratio for algal species with high abundance during late summer and autumn reflects this decreasing ratio, but within a lesser range, i.e., 20 to 5. In contrast, TN:TP ratios for species abundant during the early vernal period showed no, or an inverse, relation to the TN:TP ratio of the water.  相似文献   
93.
Sediment cores from the shallow and deep basins of Pyramid Lake, Nevada, revealed variations in composition with depth reflecting changes in lake level, river inflow, and lake productivity. Recent sediments from the period of historical record indicate: (1) CaCO3 and organic content of sediment in the shallow basin decrease at lower lake level, (2) CaCO3 content of deep basin sediments increases when lake level decreases rapidly, and (3) the inorganic P content of sediments increases with decreasing lake volume. Variations in sediment composition also indicate several periods for which productivity in Pyramid Lake may have been elevated over the past 1000 years. Our data provide strong evidence for increased productivity during the first half of the 20th Century, although the typical pattern for cultural eutrophication was not observed. The organic content of sediments also suggests periods of increased productivity in the lake prior to the discovery and development of the region by white settlers. Indeed, a broad peak in organic fractions during the 1800's originates as an increase starting around 1600. However, periods of changing organic content of sediments also correspond to periods when inflow to the lake was probably at extremes (e.g. drought or flood) indicating that fluctuations in river inflow may be an important factor affecting sediment composition in Pyramid Lake.  相似文献   
94.
The presence of amino acids in atmospheric precipitation and aerosols has been noted for many years, yet relatively little is known about these or other nitrogen containing organic compounds in the atmosphere. Marine and continental rainwater analyses indicate that atmospheric aerosols, and subsequently atmospheric precipitation, may contain substantial levels of free and combined amino acids. The most likely source of amino N in the remote marine atmosphere appears to be the injection of proteinaceous material through the action of bursting bubbles at the sea-air interface or the long range transport from terrestrial sources. The capacity of these substrates to undergo photooxidation and photodegradation in the atmosphere to simpler species, such as ammonium ions, carboxylic acids, and for the S containing amino acids, oxidized forms of sulfur, has received little attention from atmospheric chemists. The photochemistry of covalently bound amino groups, particularly as found in peptides and amino acids, is discussed here with the purpose of summarizing what is known of their occurrence and their possible importance to atmospheric chemistry.  相似文献   
95.
A series of novel long-chain 3,4-dialkylthiophenes (C36–C54) was identified in a number of sediments ranging from Pleistocene to Cretaceous. The identifications were based on mass spectral characterisation, desulphurisation and mass spectral data of synthesised model compounds. These organic sulphur compounds are probably formed by sulphur incorporation into mid-chain dimethylalkadienes with two methylenic double bonds. These putative precursor lipids are unprecedented and may be considered rather unusual. The distribution of 3,4-dialkylthiophenes in sediments varies considerably with the depositional palaeoenvironment, indicating that these compounds have a potential as molecular markers reflecting changes in palaeoenvironment.  相似文献   
96.
Photoelectric detectors for the measurement of photolysis frequencies of different trace gases in the atmosphere are described. They exhibit uniform response characteristics over one hemisphere (2 sr) and wavelength characteristics closely matched to those of the photolysis frequencies J O1D, J NO2, and J NO3, respectively. Absolute calibration of the J O1D detector was performed by chemical actinometry with an accuracy of ±16 percent. Simultaneous measurements of J NO2 and J O1D are presented.  相似文献   
97.
A statistically relevant correlation between the reaction rate coefficient, k OH, for the OH radical reaction with 161 organic compounds in the gas phase at 300 K, and the corresponding vertical ionisation energies E i,v, reveals two classes of compounds: aromatics where –log(k OH/cm3s-1)3/2E i,v(eV)–2 and aliphatics where –log(k OH/cm3s-1)4/5E i,v(eV)+3. The prediction of the rate coefficient, k OH, for the reaction of OH with organic molecules from the above equations has a probability of about 90%. Assuming a global diurnal mean of the OH radical concentration of 5×105 cm3, the upper limit of the tropospheric half-life of organic compounds and their persistence can be estimated.  相似文献   
98.
The photodissociation coefficient, J NO2 of NO2 in the atmosphere was calculated at 235 and 298 K using the measured temperature dependences of the absorption cross-sections and quantum yields. These calculations gave a ratio J NO2(298 K)/J NO2(235 K)=1.155±0.010 which is only weakly dependent on altitude, surface albedo and solar zenith angle.  相似文献   
99.
The seasonal and diurnal variations of ozone mixing ratios have been observed at Niwot Ridge. Colorado. The ozone mixing ratios have been correlated with the NO x (NO+NO2) mixing ratios measured concurrently at the site. The seasonal and diurnal variations in O3 can be reasonably well understood by considering photochemistry and transport. In the winter there is no apparent systematic diurnal variation in the O3 mixing ratio because there is little diurnal change of transport and a slow photochemistry. In the summer, the O3 levels at the site are suppressed at night due to the presence of a nocturnal inversion layer that isolated ozone near the surface, where it is destroyed. Ozone is observed to increase in the summer during the day. The increases in ozone correlate with increasing NO x levels, as well as with the levels of other compounds of anthropogenic origin. We interpret this correlation as in-situ or in-transit photochemical production of ozone from these precursors that are transported to our site. The levels of ozone recorded approach 100 ppbv at NO x mixing ratios of approximately 3 ppbv. Calculations made using a simple clean tropospheric chemical model are consistent with the NO x -related trend observed for the daytime ozone mixing ratio. However, the chemistry, which does not include nonmethane hydrocarbon photochemistry, underestimates the observed O3 production.  相似文献   
100.
Recent sediments from two alpine lakes (> 3300 m asl) in the Colorado Front Range (USA) register marked and near-synchronous changes that are believed to represent ecological responses to enhanced atmospheric deposition of fixed nitrogen from anthropogenic sources. Directional shifts in sediment proxies include greater representations of mesotrophic diatoms and increasingly depleted 15N values. These trends are particularly pronounced since ~ 1950, and appear to chronicle lake responses to excess N derived from agricultural and industrial sources to the east. The rate and magnitude of recent ecological changes far exceed the context of natural variability, as inferred from comparative analyses of a long core capturingthe entire 14,000-year postglacial history of one of the lakes. Nitrogen deposition to these seemingly pristine natural areas has resulted in subtle but detectable limnological changes that likely represent the beginning of a stronger response to nitrogen enrichment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号