首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   6篇
  国内免费   80篇
测绘学   2篇
大气科学   5篇
地球物理   19篇
地质学   127篇
海洋学   7篇
天文学   1篇
综合类   3篇
自然地理   5篇
  2023年   1篇
  2020年   2篇
  2019年   10篇
  2018年   9篇
  2017年   2篇
  2016年   5篇
  2015年   6篇
  2014年   10篇
  2013年   13篇
  2012年   7篇
  2011年   13篇
  2010年   7篇
  2009年   11篇
  2008年   7篇
  2007年   9篇
  2006年   4篇
  2005年   8篇
  2004年   8篇
  2003年   7篇
  2002年   2篇
  2001年   1篇
  2000年   5篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1991年   3篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1983年   2篇
排序方式: 共有169条查询结果,搜索用时 750 毫秒
81.
吕梁山脉东麓花岗岩风化土的工程类型与我国南方以及日本、韩国等地的花岗岩风化土有较大差别。为了对吕梁山压实花岗岩风化土的物理力学性状有较全面认识,通过常规土工试验、X射线衍射试验、大固结试验、大三轴试验等方法,对其击实特性、承载特性、变形特性、剪胀特性、强度特性等进行了分析。结果表明:黏土掺量对花岗岩风化土的击实特性和承载特性影响较大,存在两个不同的黏土掺量界限值(约8%和4%),分别使得试样密实状态和承载能力处于最优;试样不存在膨胀潜势,无膨胀性,为低压缩性材料;压实花岗岩风化土颗粒破碎的特点导致试样二次加载→卸载压缩曲线存在两次明显塑性变形增大的现象;剪切时由于试样内部颗粒历经压密→错动→翻越→破碎的过程,导致不同围压下试样表现出不同的剪胀性;剪切过程中由于颗粒破碎的存在,使得试样表现出强度非线性特点。  相似文献   
82.
绿泥石片岩是一种典型的软岩,开挖过程中出现的围岩大变形和塌方对工程安全危害极大。为了深入研究绿泥石片岩的力学特征并建立其合理的力学模型,首先进行了不同围压下的三轴压缩试验,并考虑应力状态对塑性演化的影响,定义了新的内变量;分析了凝聚力和内摩擦角随内变量的演化规律,结果表明,凝聚力先近似呈线性减小,而后近似呈抛物线递减至残余破坏;而内摩擦角一直近似呈抛物线递增;研究了绿泥石片岩的剪胀特性,分析了剪胀角随内变量演化规律,结果表明,剪胀角与内摩擦角呈相反的演化趋势。考虑硬化、软化和剪胀特性,建立了绿泥石片岩的力学模型,对室内三轴压缩试验结果的模拟分析表明,该力学模型可以较好地描述绿泥石片岩的硬化、软化规律和剪胀等性质,为工程安全性分析提供了基本的力学模型,对于类似软岩力学性质的研究也具有重要的参考意义。  相似文献   
83.
基于大三轴试验的粗粒土剪胀性研究   总被引:1,自引:0,他引:1  
褚福永  朱俊高  殷建华 《岩土力学》2013,34(8):2249-2254
采用大三轴剪切仪对3种不同相对密度的双江口心墙坝覆盖层料进行固结排水剪切试验,重点研究粗粒土的剪胀特性,分析粗粒土的剪胀性与围压、相对密度之间的关系,并检验修正剑桥模型的剪胀方程、Rowe剪胀方程对粗粒土的适用性。结果表明,粗粒土在低围压下表现出明显的剪胀趋势,随着围压的增加,逐渐由剪胀向剪缩过渡;随着密度的增大,粗粒土的剪胀性明显增强;相变应力比是粗粒土剪胀强弱的一个重要影响因素,其随密度的增加而增加,随围压的增大则呈线性减小趋势;粗粒土的剪胀性与相对密度、围压关系密切,根据试验数据得出最大剪胀率 与相对密度 、围压 之间的关系式;修正剑桥模型的剪胀方程不能反映粗粒土的剪胀性;Rowe剪胀方程在一定程度上能反映粗粒土的剪胀性,但高围压下在压缩阶段低估了其压缩性,而在剪胀阶段则高估了其剪胀性。  相似文献   
84.
剪胀性是岩土材料的重要特性之一,为研究不同工况条件下粗粒料室内大型直剪试验中的剪胀特性,采用新型室内大型直剪仪对3组不同含水率、4组不同剪切速率、5组不同含砾率等3种不同影响因素的试样进行了室内大型直剪试验,分析了剪切时试样的垂直位移与水平剪切位移及垂直应力的关系。试验结果表明:在保持其他影响因素相同条件下,垂直应力的增加导致相同水平剪切位移对应的剪缩量增加;试样的最大剪缩量随着含水率的增加有一定程度的增大,而随着剪切速率的增加而减小;含砾率低于30%试样的最大剪缩量较含砾超过于30%试样的剪缩量大很多,最大剪缩量差别为3倍。当试样含砾率小于50%时,由于试样中富含细颗粒的影响,使得应力-应变曲线具有应变软化属性以及剪胀性趋于一固定值。峰值强度前的应力比-位移增量关系采用非线性的二次项拟合比线性关系的拟合度更好,认为Matsuoka提出的二维剪胀公式不适用于粗粒料,将其修正成二次多项式并给出试验中的经验参数μ的取值区间。  相似文献   
85.
赵春雷  赵成刚  张卫华  蔡国庆 《岩土力学》2014,35(11):3056-3064
为了真实地描述饱和密砂在循环加载过程中的变形行为,需要引入考虑剪胀阶段组构变化的宏观参量。在已有的基于状态参量的本构模型基础上,引入反映组构变化的剪胀内变量,简称组构-剪胀内变量z。以相变线PTL作为参考线,采用基于相变的状态参量判断砂土在初始时刻和任意时刻体积变形的变化趋势,并通过z对剪胀比d的影响,考虑反向加载过程中塑性变形的累积,建立了一个针对饱和密砂的循环加载的弹塑性本构模型。该模型根据试验现象将已有模型中的塑性剪切模量区分为首次加载模量与再加载模量,能较好地模拟排水情况下砂土循环加载的胀-缩变化过程。最后,针对密砂的三轴排水情况,利用文中模型进行预测,并把预测结果与试验结果进行比较,结果表明该模型能够总体反映砂土循环加载的变形行为。  相似文献   
86.
汪轶群  洪义  国振  王立忠 《岩土力学》2018,39(1):199-206
针对取自我国南部某海域的钙质砂样本,做了以下两方面工作:一是通过电子显微镜获取了钙质砂颗粒的几何投影图像,利用图像处理技术对图形进行黑白二值化处理,获取单元颗粒形状轮廓边界,使用圆度和粗糙度2个参数对钙质砂的颗粒形状进行定义和量化。二是通过不同围压下的三轴固结排水剪切试验及试验前后的颗分测量对比,研究了颗粒破碎对钙质砂的变形、强度、能量耗散等特性的影响。研究表明,大粒径钙质砂(粒径大于2.0 mm)和小粒径钙质砂(粒径小于0.5 mm)形态比较接近圆形、颗粒表面相对光滑;相比而言,中间粒径(粒径介于0.5~2.0 mm之间)钙质砂形状较不规则,表面棱角较多。钙质砂在三轴排水剪切过程中发生颗粒破碎,试样向着级配均匀的方向发展。随着初始围压的增大,颗粒破碎程度加大,土样整体剪胀趋势减小,而破碎引起的能量耗散增加。而在高围压(初始围压为600 kPa)剪切过程中,仅考虑摩擦耗散,以及同时考虑摩擦、体积耗散两种情况下,计算得到的最大颗粒破碎耗散分别可达土样总输入塑性功的25%和18%。  相似文献   
87.
孙凯  陈正林  路德春 《岩土力学》2018,39(5):1589-1597
改良土中土颗粒和水化物形成具有一定结构的聚合体而表现出较强的结构性。与重塑正常固结土相比,改良土的结构性更强且具有一定的超固结比。在变形发展过程中,由于聚合体结构逐渐破坏,黏聚强度逐渐损失,土体表现出应变软化的力学特性。基于适用于超固结重塑黏土的统一硬化模型,引入改良土黏聚强度及其随塑性变形的演化规律,对统一硬化参数进行了修正,并采用更适用于改良土的非关联的流动法则,建立了一个可以较好地描述改良土力学特性的弹塑性本构模型。通过与水泥改良土和石灰改良土的三轴剪切排水试验的结果进行对比,该模型能够较为合理地描述改良土加载过程中黏聚强度损失对其力学特性的影响。黏聚强度的存在导致土体表现出超固结土的特性,当黏聚强度损失时会加剧土体的软化速度。  相似文献   
88.
吴永胜  谭忠盛  余贤斌  喻渝  朱勇 《岩土力学》2018,39(8):2747-2754
对成兰铁路4种典型千枚岩开展不同加载方位角的单轴压缩扩容特性试验研究,研究结果表明:千枚岩一般在峰前产生扩容现象,加载方位角和各向异性程度影响其扩容行为。扩容前后纵、横向应变速率明显不同,扩容前轴向应变率大于横向,扩容后则反之;千枚岩体积应变正负转换点相对峰值点有3种出现情况:峰前、峰后和不出现,不同出现概率与加载过程中原生裂纹的参与程度、形式以及对破坏模式的影响有关。千枚岩扩容率最大值出现在轴向应变最大瞬间,高方位角对扩容更敏感;千枚岩扩容起始应力普遍较低,不同方位角和岩性差别较大;弹性模量、泊松比显著地反映了千枚岩加载中的变形破坏过程,扩容对其产生重要影响。  相似文献   
89.
90.
迄今,矿山开采沉陷领域的研究者们在采煤引起的地表移动规律研究及共服务于生产方面已经取得了令人膛目的成就,但是在复杂构造条件下采煤引起的特殊地表移动现象研究方面尚无明显进展。本文运用现代工程地质学理论和现代变形力学理论,对一个复杂的摺皱断裂十分发育的条件下采取露天和井下联合开采方式所引起的特殊地表移动现象及其规律作了分析,取得了预测规律与实际情况一致的结果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号