首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   527篇
  免费   61篇
  国内免费   105篇
测绘学   82篇
大气科学   67篇
地球物理   80篇
地质学   210篇
海洋学   142篇
天文学   4篇
综合类   36篇
自然地理   72篇
  2024年   2篇
  2023年   3篇
  2022年   14篇
  2021年   19篇
  2020年   25篇
  2019年   20篇
  2018年   22篇
  2017年   11篇
  2016年   20篇
  2015年   23篇
  2014年   13篇
  2013年   32篇
  2012年   31篇
  2011年   24篇
  2010年   24篇
  2009年   31篇
  2008年   41篇
  2007年   42篇
  2006年   36篇
  2005年   25篇
  2004年   26篇
  2003年   17篇
  2002年   22篇
  2001年   14篇
  2000年   16篇
  1999年   16篇
  1998年   24篇
  1997年   16篇
  1996年   8篇
  1995年   14篇
  1994年   16篇
  1993年   8篇
  1992年   7篇
  1991年   7篇
  1990年   4篇
  1989年   5篇
  1988年   5篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1972年   1篇
  1954年   1篇
排序方式: 共有693条查询结果,搜索用时 465 毫秒
651.
基于EMD的信号瞬时特征的小波分析方法   总被引:8,自引:1,他引:7  
提出了一种基于EMD(Empirical Mode Decomposition)的信号瞬时特征的小波分析方法。用这种方法提取非平稳信号的瞬时频率和瞬时幅值分三个基本步骤:首先,用EMD把信号分解成IMF(Intrinsic Mode Function)分量;接着,对IMF分量进行小波分析,从小波系数的幅角函数中提取小波脊线;最后,从小波脊线中提取瞬时频率和瞬时幅值。通过对仿真信号的分析,验证了该方法能有效地分析非平稳信号。  相似文献   
652.
653.
董玉祥  马骏  黄德全 《中国沙漠》2008,28(2):202-207
选择我国海岸沙丘尤其是横向沙脊最为典型的河北昌黎黄金海岸,分别在人为干扰剧烈和人为干扰较少的区段,按垂直于横向沙脊走向各选择一个典型的横向沙脊断面,采集其表面沙质沉积物粒度样品,通过对样品粒度及其参数的分析与计算,对比分析人为干扰对海岸沙丘表面粒度分布的可能影响。结果表明,在滑沙和迎风坡脚沙质地表翻动与堆积沙堆等人为影响下,横向沙脊表面粒度分布发生了明显变异,由近自然状态下自沙脊两侧坡脚向脊顶粒径变细和分选变好、向陆背风坡的细化与分选优于向海迎风坡、脊顶沙粒最细及向陆背风坡脚最粗的自然分布模式转变为人为干扰下自两侧坡脚向沙脊坡部粒径变细与分选变好、向海迎风坡的细化与分选优于向陆背风坡、向海迎风坡粒径最细及迎风坡脚最粗的人为分布模式。  相似文献   
654.
Glassy lava fragments were collected in pushcores or using a small suction-sampler from over 450 sites along the Juan de Fuca Ridge, Blanco Transform Fault, Gorda Ridge, northern East Pacific Rise, southern East Pacific Rise, Fiji back-arc basin, and near-ridge seamounts in the Vance, President Jackson, Taney, and a seamount off southern California. The samples consist of angular glass fragments, limu o Pele, Pele's hair, and other fluidal fragments formed during pyroclastic eruptions. Since many of the sites are deeper than the critical point of seawater, fragmentation cannot be hydrovolcanic and caused by expansion of seawater to steam. The glass fragments have a wide range of MORB compositions, ranging from fractionated to primitive and from depleted to enriched. Enriched magmas, which have higher volatile contents, may form more abundant pyroclasts than depleted magmas. Eruptions with high effusion rates produce sheet flows and abundant pyroclasts whereas those with low effusion rates produce pillow ridges and few pyroclasts. This relation suggests that high effusion and conduit rise rates are coupled to high magmatic gas contents. The eruptions are mainly effusive with a minor strombolian bubble burst component. We propose that the gas phase is an added component of variable amounts of magmatic foam from the top of the magma reservoir. As the mixture of resident magma and foam rises in the conduit, the larger bubbles in the foam rise more quickly and sweep up the smaller bubbles nucleating and growing from the resident magma. On eruption, the process of bubble coalescence is more complete for the slower rising, gas-poor lavas that erupt as pillow lavas whereas the limu o Pele associated with sheet flow eruptions commonly contain several percent vesicles that avoided coalescence during ascent. The spatter erupted at the vent is quench granulated in seawater above the vent, reducing the pyroclast grainsize. The granulated spatter and limu o Pele fragments are then entrained in a rising plume of seawater heated by the eruption, which disperses them to distances as great as 5 km from the vent.  相似文献   
655.
Mid-ocean ridges represent important locations for understanding the interactions between deformation and melt production, transport, and emplacement. Melt transport through the mantle beneath mid-ocean ridges is closely associated with deformation. Currently recognized transport and emplacement processes at ridges include: 1) dikes and sills filling stress-controlled fractures, 2) porous flow in a divergent flow field, 3) self-organizing porous dunite channels, and 4) shear zones. Our recent observations from the sub-oceanic mantle beneath a propagating ridge axis in the Oman ophiolite show that gabbronorite and olivine gabbro dikes fill hybrid fractures that show both shear and extensional components of strain. The magnitudes of shear strain recorded by the dikes are significant and comparable to the longitudinal extensions across the dikes. We suggest that the hybrid dikes form from the interactions between shear deformation and pressurized melt in regions of along-axis flow at mid-ocean ridges. The displacement across the dikes is kinematically compatible with high temperature flow recorded by plastic fabrics in host peridotites. Field observations and mechanical considerations indicate that the dikes record conditions of higher stress and lower temperature than those recorded by the plastic flow fabrics. The features of hybrid dikes suggest formation during progressive deformation as conditions changed from penetrative plastic flow to strain localization along melt-filled fractures. The combined dataset indicates that the dikes are formed during along-axis flow away from regions of diapiric upwelling at propagating ridge segments. Hybrid dikes provide a potentially powerful kinematic indicator and strain recorder and define a previously unrecognized mechanism of melt migration. Our calculations show that hybrid dikes require less melt pressure to form than purely tensile dikes and thus may provide a mechanism to tap melt reservoirs that are under-pressurized with respect to lithostatic pressure.  相似文献   
656.
????????????LIDAR??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????С?????????????и????ü????????????????????????????????????С?  相似文献   
657.
A progression of induration, erosion, and redeposition of transverse and networked transverse aeolian ridges (TARs) has been documented in the Medusae Fossae Formation (MFF), Mars. Cratered and eroded aeolian bedforms are rarely observed on Mars, indicating that those found in the MFF have been inactive for much longer than those found elsewhere. Indurated TARs are observed to grade into faceted MFF terrain, indicating a genetic relationship between the two. We propose that TAR deposition, induration and erosion have played a larger role in the surface morphology and evolution of the MFF than previously recognized. The deposition, induration, and erosion of TARs indicate that the MFF has undergone multiple cycles of reworking, and that much of its current surface morphology does not reflect the circumstances of its primary emplacement. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
658.
探讨了岭估计方法在GPS高程拟合中的应用,并给出了岭估计中确定岭参数k值的一种新方法——方差扩大因子法。通过某地区GPS水准网数据进行实验验证,结果表明,与传统多项式曲面拟合模型比较,岭估计方法具有拟合精度高、适用复杂的地形等特点。  相似文献   
659.
We present a new numerical approach for simulating geomorphic and stratigraphic processes that combines open‐channel flow with non‐uniform sediment transport law and semi‐empirical diffusive mass wasting. It is designed to facilitate modelling of surface processes across multiple space‐ and time‐scales, and under a variety of environmental and tectonic conditions. The physics of open‐channel flow is primarily based on an adapted Lagrangian formulation of shallow‐water equations. The interaction between flow and surface geology is performed by a non‐uniform total‐load sediment transport law. Additional hillslope processes are simulated using a semi‐empirical method based on a diffusion approach. In the implementation, the resolution of flow dynamics is made on a triangulated grid automatically mapped and adaptively remeshed over a regular orthogonal stratigraphic mesh. These new methods reduce computational time while preserving stability and accuracy of the physical solutions. In order to illustrate the potential of this method for landscape and sedimentary system modelling, we present a set of three generic experiments focusing on assessing the influence of contrasting erodibilities on the evolution of an active bedrock landscape. The modelled ridges morphometrics satisfy established relationships for drainage network geometry and slope distribution, and provide quantitative information on the relative impact of hillslope and channel processes, sediment discharge and alluviation. Our results suggest that contrasting erodibility can stimulate autogenic changes in erosion rate and influence the landscape morphology and preservation. This approach offers new opportunities to investigate joint landscape and sedimentary systems response to external perturbations. The possibility to define and track a large number of materials makes the implementation highly suited to model source‐to‐sink problems where material dispersion is the key question that needs to be addressed, such as natural resources exploration and basin analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
660.
Takayuki  Uchino  Makoto  Kawamura 《Island Arc》2010,19(1):177-191
The Nedamo Terrane, an Early Carboniferous accretionary complex, is the oldest biostratigraphically dated accretionary complex in Japan. The purpose of this study is to describe and interpret a conglomerate from the Nedamo Terrane that contains clasts of high-pressure/low-temperature (high- P/T ) schist (mainly garnet-bearing phengite schist) and ultramafic rock, and to infer the tectonics of an Early Carboniferous arc–trench system at the eastern margin of the paleo-Asian continent. Clasts of high- P/T schist and ultramafic rock within the conglomerate make up 8.4 and 6.7% of the total clasts, respectively, based on modal counts. These clasts are subangular to subrounded, whereas volcanic clasts are well rounded. The source of the schist clasts, which yield a radiometric age of 347–317 Ma, is considered to be the Renge Metamorphic Rocks of Southwest Japan or equivalent rocks. Based on the chemical composition of chromian spinel, the source of ultramafic clasts is inferred to be the island-arc-type Ordovician Miyamori and Hayachine ultramafic complexes in the Kitakami Massif. The conglomerate records multiple provenance regions, including an island arc (South Kitakami Terrane) and a forearc ridge; the high P/T schist and ultramafic rocks were exhumed in the forearc region. The duration of the interval from the early stages of exhumation of the schist to its deposition in the trench as clasts is estimated to have been less than 30 my.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号