首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   2篇
地球物理   3篇
地质学   23篇
  2016年   2篇
  2014年   2篇
  2013年   7篇
  2012年   3篇
  2011年   1篇
  2008年   1篇
  2006年   1篇
  2004年   3篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
排序方式: 共有26条查询结果,搜索用时 62 毫秒
11.
A simple flux‐free fusion technique was developed to analyse major and trace element compositions of silicate rocks. The sample powders were melted in a molybdenum capsule sealed in a graphite tube to make a homogenous glass in a temperature‐controlled one‐atmosphere furnace. The glass was then measured for both major and trace element concentrations by LA‐ICP‐MS using a calibration strategy of total metal‐oxide normalisation. The optimum conditions (i.e., temperature and duration) to make homogeneous glasses were obtained by performing melting experiments using a series of USGS reference materials including BCR‐2, BIR‐1, BHVO‐2, AGV‐1, AGV‐2, RGM‐1, W‐2 and GSP‐2 with SiO2 contents from 47 to 73% m/m. Analytical results of the USGS reference materials using our method were generally consistent with the recommended values within a discrepancy of 5–10% for most elements. The routine precision of our method was generally better than 5–10% RSD. Compared with previous methods of LA‐ICP‐MS whole‐rock analyses, our flux‐free fusion method is convenient and efficient in making silicate powder into homogeneous glass. Furthermore, it limits contamination and loss of volatile elements during heating. Therefore, our new method has great potential to provide reliable and rapid determinations of major and trace element compositions for silicate rocks.  相似文献   
12.
The ferrozine wet chemical method was optimised for the determination of the total iron content and speciation in small geological samples. The ferrozine micro‐method involves dissolution by a mixture of HF and H2SO4 followed by spectrophotometric analysis using the complexing agent ferrozine. The method was tested for twenty‐one replicates of eight rock RMs using test portions of 5–14 mg and containing 0.37–5.45 mg total Fe and more than 0.29 mg Fe(II). The optimised ferrozine method was accurate to within 0.23% m/m FeO and 0.34% m/m total Fe, which compares favourably to other wet chemical methods.  相似文献   
13.
In this study, a high‐precision method for the determination of Sm and Nd concentrations and Nd isotopic composition in highly depleted ultramafic rocks without a preconcentration step is presented. The samples were first digested using the conventional HF + HNO3 + HClO4 method, followed by the complete digestion of chromite in the samples using HClO4 at 190–200 °C and then complete dissolution of fluoride formed during the HF decomposition step using H3BO3. These steps ensured the complete digestion of the ultramafic rocks. The rare earth elements (REEs) were separated from the sample matrix using conventional cation‐exchange chromatography; subsequently, Sm and Nd were separated using the LN columns. Neodymium isotopes were determined as NdO+, whereas Sm isotopes were measured as Sm+, both with very high sensitivity using single W filaments with TaF5 as an ion emitter. Several highly depleted ultramafic rock reference materials including USGS DTS‐1, DTS‐2, DTS‐2b, PCC‐1 and GSJ JP‐1, which contain extremely low amounts of Sm and Nd (down to sub ng g?1 level), were analysed, and high‐precision Sm and Nd concentration and Nd isotope data were obtained. This is the first report of the Sm‐Nd isotopic compositions of these ultramafic rock reference materials except for PCC‐1.  相似文献   
14.
Isotope dilution (ID) mass spectrometry is a primary method of analysis suited for the accurate and precise measurement of several trace elements in geological matrices. Here we present mass fractions and respective uncertainties for Cr, Cu, Ni, Sn, Sr and Zn in 10 silicate rock reference materials (BCR‐2, BRP‐1, BIR‐1, OU‐6, GSP‐2, GSR‐1, AGV‐1, RGM‐1, RGM‐2 and G‐3) obtained by the double ID technique and measuring the isotope ratios with an inductively coupled plasma‐mass spectrometer equipped with collision cell. Test portions of the samples were dissolved by validated procedures, and no further matrix separation was applied. Addition of spikes was designed to achieve isotope ratios close to unity to minimise error magnification factors, according to the ID theory. Radiogenic ingrowth of 87Sr from the decay of 87Rb was considered in the calculation of Sr mass fractions. The mean values of our results mostly agree with reference values, considering both uncertainties at the 95% confidence level, and also with ID data published for AGV‐1. Considering all results, the means of the combined uncertainties were < 1% for Sr, approximately 2% for Sn and Cu, 4% for Cr and Ni and almost 6% for Zn.  相似文献   
15.
Data reported by laboratories contributing to the GeoPT proficiency testing programme for geochemical laboratories over the period from 2001 to 2011 have been assessed to identify the elements and concentration ranges over which analytical performance can be considered satisfactory. Criteria developed in the paper indicated that performance in the content determination of the elements/constituents SiO2, Al2O3, MnO, Cs, Dy, Er, Eu, Ga, Hf, Ho, Lu, Nd, Pr, Sm, Sr, Tb, Tl, Tm, U, Y, Yb and Zn was satisfactory over the full concentration range assessed. The elements/constituents TiO2, Fe2O3(T), MgO, CaO, Na2O, K2O, P2O5, Ba, Be, Cd, Ce, Co, Gd, La, Li, Nb, Rb, Sb, Sc, Sn, Ta, Th, V and Zr showed some degradation in performance at lower concentration levels (approaching the detection limit of some techniques). Performance in determining LOI, As, Bi, Cr, Cu, Ge, Mo, Ni, Pb and W was in general unsatisfactory over the full concentration range assessed. Other elements (especially Fe(II)O, H2O+, CO2, Ag, Au, B, Br, Cl, F, Hg, I, In, Ir, N, Os, Pd, Pt, Re, Rh, S, Se, Te) could not be evaluated as they were not routinely reported by laboratories participating in the GeoPT programme, often because they are present in silicate rocks at sufficiently low concentrations to require a pre‐concentration stage. Some suggestions are made for the causes of unsatisfactory performance, but further progress will require a detailed assessment of the methods used by participating laboratories, which will form the subject of a further paper.  相似文献   
16.
Résumé

Les propriétés magnétiques des schistes, grès et calcaires du flysch eocène de la zone dauphinoise ont été étudiées en relation avec la minéralogie et la structure de ces roches. La susceptibilité magnétique en champ faible est principalement due au paramagnétisme des phyllosilicates (illite et chlorite).

L’anisotropie de susceptibilité correspond à un ellipsoïde aplati qui présente les caractéristiques suivantes : un axe minimal perpendiculaire à la schistosité et un axe maximal parallèle soit à une linéation d’intersection soit à la direction d’étirement maximal.

On présente un modèle mathématique simple permettant d’utiliser le taux d’anisotropie magnétique pour quantifier l’orientation préférentielle des phyllosilicates. Ce modèle testé sur les niveaux les plus phylliteux du flysch donne des résultats en bon accord avec ceux de la goniometrie de texture. Les possibilités et les avantages de cette méthode structure-logique quantitative sont discutés.  相似文献   
17.
Sample digestion is a critical stage in the process of chemical analysis of geological materials by ICP‐MS. We present a new HF/HNO3 procedure to dissolve silicate rock samples using a high pressure asher system. The formation of insoluble AlF3 was the major obstacle in achieving full recoveries. This was overcome by setting an appropriate digestion temperature and adding Mg to the samples before digestion. Sodium peroxide sintering was also investigated and the inclusion of a heating step to the alkaline sinter solution improved the recoveries of thirteen elements other than the lanthanides. The results of these procedures were compared with data sets generated by common acid decomposition techniques. Forty‐one trace elements were determined using an ICP‐QMS equipped with a collision cell. Under optimum conditions of gas flow and kinetic energy discrimination, polyatomic interferences were eliminated or attenuated. The measurement bias obtained for eight reference materials (BCR‐2, BHVO‐2, BIR‐1, BRP‐1, OU‐6, GSP‐2, GSR‐1 and RGM‐1) and intermediate precision (RSD) were generally better than ± 5%. The expanded measurement uncertainties estimated for two certified reference materials were mostly between 7 and 15%. New data sets for the reference materials are provided, including constituents with previously unavailable values and also for the USGS candidate reference material G‐3.  相似文献   
18.
An organic solvent‐free two‐step column procedure is presented that provided robust, high yield and super clean separation of Li from silicate rock sample matrices. The measured δ7Li value for BHVO‐2 of +4.29 ± 0.23‰ (1s) is comparable with the reported values. The δ7Li values for GSJ JP‐1 (+3.14 ± 0.41‰, 1s) and USGS DTS‐2 (+4.91 ± 0.34‰, 1s) presented here provide new reference values for ultramafic rock reference materials.  相似文献   
19.
KAr analyses on whole rock and minerals are reported for the Kokoumi anorogenic pluton and alkaline volcanics of the Benue valley, west of Garoua (northern Cameroon), which belong to the northern part of the ‘Cameroon Line’. The two formations yield similar ages of 39 and 37 Ma, respectively. These values likely correspond to the time of emplacement. They are in agreement with the interpretation considering the ‘Cameroon Line’ as a huge lithospheric crack tapping a hot deep asthenospheric zone. To cite this article: R. Montigny et al., C. R. Geoscience 336 (2004).  相似文献   
20.
The transitional virtual geomagnetic poles (VGPs) of the five most detailed records lie within the longitudinal bands of America, western Europe and eastern Asia. This distribution does not support the hypothesis of a direct link with heterogeneities of the lower mantle underneath Americas and eastern Asia. A similar distribution of VGPs persists by adding less detailed records and show similarities with the distribution of maximum inclination anomalies predicted by time-averaged field models. However, the two databases are far too limited to infer any recurrence of non-dipole components during reversals. Clusters of VGPs are observed in most records at various geographical locations without preference for specific longitudes, which most likely result from intense volcanism during short time periods rather than from transitional dipolar states.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号