首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   297篇
  免费   102篇
  国内免费   268篇
测绘学   1篇
大气科学   9篇
地球物理   178篇
地质学   436篇
海洋学   18篇
天文学   1篇
综合类   11篇
自然地理   13篇
  2024年   3篇
  2023年   4篇
  2022年   11篇
  2021年   6篇
  2020年   18篇
  2019年   29篇
  2018年   27篇
  2017年   17篇
  2016年   22篇
  2015年   32篇
  2014年   42篇
  2013年   40篇
  2012年   30篇
  2011年   49篇
  2010年   40篇
  2009年   34篇
  2008年   29篇
  2007年   32篇
  2006年   27篇
  2005年   23篇
  2004年   32篇
  2003年   17篇
  2002年   8篇
  2001年   15篇
  2000年   14篇
  1999年   15篇
  1998年   14篇
  1997年   14篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1981年   1篇
排序方式: 共有667条查询结果,搜索用时 31 毫秒
581.
582.
由于室内剪切试验结果存在试样结构性扰动和尺寸效应等带来的不确定性问题,且以往的常规原位大型剪切试验是针对天然状态土体,不能获得饱和土体的强度参数,导致岩土结构稳定性分析和工程设计中大多采用反演方法求取强度参数,而很少直接运用这些试验参数.在本次试验方法研究中,试验仪器仍然采用常规的天然土体原位大型剪切试验仪器,针对土体饱和问题,设计了“制样后饱和法”和“饱和后制样法”2种浸水饱和装置,并采用这2套装置在甘肃省黑方台地区进行了7个饱和黄土原位大型剪切试验.结果表明,2种饱和方法都能够使土样饱和,“饱和后制样法”容易达到饱和,试验历时短,但对试样扰动大,甚至导致试样在制样时破坏,试验成功率低;“制样后饱和法”达到饱和历时稍长,对试样扰动小,试验成功率高.与原位天然大剪试验相比,粘聚力c值由44.65kPa下降至17.35kPa,φ值由14.18°降至11.95°;与室内饱和固结快剪相比,饱和黄土原位大剪的c值增加约4kPa,φ值增加3°左右.  相似文献   
583.
This paper presents first the applications of uniqueness and strain localization analysis of saturated porous media, where localization of deformation into well defined narrow zones in a saturated porous medium is studied in terms of discontinuous bifurcation theory. A generalized plasticity constitutive model and a Mohr–Coulomb model are used in both the theoretical and numerical analyses of shear band formations. The critical hardening moduli and shear band angle for localization are computed, and quantitative results are given for both constitutive models. Numerical results previously obtained and new ones are confirmed by this analytical and numerical investigation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
584.
Pietruszczak and coworkers (Internat. J. Numer. Anal. Methods Geomech. 1994; 18 (2):93–105; Comput. Geotech. 1991; 12 ( ):55–71) have presented a continuum‐based model for predicting the dynamic mechanical response of partially saturated granular media with viscous interstitial liquids. In their model they assume that the gas phase is distributed uniformly throughout the medium as discrete spherical air bubbles occupying the voids between the particles. However, their derivation of the air pressure inside these gas bubbles is inconsistent with their stated assumptions. In addition the resultant dependence of gas pressure on liquid saturation lies outside of the plausible range of possible values for discrete air bubbles. This results in an over‐prediction of the average bulk modulus of the void phase. Corrected equations are presented. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
585.
The time required at a field site to obtain a few measurements of saturated hydraulic conductivity (Ks) will allow for many measurements of soil air permeability (ka). This study investigates if ka measured in situ (ka, in situ) can be a substitute for measurement of Ks in relation to infiltration and surface runoff modelling. Measurements of ka, in situ were carried out in two small agricultural catchments. A spatial correlation of the log‐transformed values existed having a range of approximately 100 m. A predictive relationship between Ks and ka measured on 100‐cm3 soil samples in the laboratory was derived for one of the field slopes and showed good agreement with an earlier suggested predictive Kska relationship. In situ measurements of Ks and ka suggested that the predictive relationships also could be used at larger scale. The Kska relationships together with the ka, in situ data were applied in a distributed surface runoff (DSR) model, simulating a high‐intensity rainfall event. The DSR simulation results were highly dependent on whether the geometric average of ka, in situ or kriged values of ka, in situ was used as model input. When increasing the resolution of Ks in the DSR model, a limit of 30–40 m was found for both field slopes. Below this limit, the simulated runoff and hydrograph peaks were independent of resolution scale. If only a few randomly chosen values of Ks were used to represent the spatial variation within the field slope, very large deviations in repeated DSR simulation results were obtained, both with respect to peak height and hydrograph shape. In contrast, when using many predicted Ks values based on a Kska relationship and measured ka, in situ data, the DSR model generally captured the correct hydrograph shape although simulations were sensitive to the chosen Kska relationship. As massive measurement efforts normally will be required to obtain a satisfactory representation of the spatial variability in Ks, the use of ka, in situ to assess spatial variability in Ks appears a promising alternative. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
586.
陆面过程模式SIB2与包气带入渗模型的耦合及其应用   总被引:1,自引:0,他引:1  
土壤含水量对陆—气相互作用过程中的能—水平衡计算以及降雨、农业灌溉对地下水补给的研究起着关键的作用。但现阶段大多数陆面过程模式对土壤含水量的计算采用一维水桶模式,忽略了流域尺度上的侧向补给、地下水位的变化、包气带土壤的非线性渗透特性对土壤含水量的影响。针对这一问题,在国内外研究较为成熟的饱和—非饱和理论的基础上,编程实现了包气带土壤水分传输方程的求解,并与陆面过程模式(SIB2)相耦合,建立起研究分层包气带土壤水分运移、非稳态的地下水位、和地表蒸散发之间定量关系的模型。最后,利用建立的耦合模型,以河西走廊黑河流域中游临泽农业综合观测场的灌溉试验为例,模拟干旱内陆平原区小麦生长期间定额灌水条件下土壤含水量的变化。计算结果表明:模型能够准确计算瞬时土壤含水量、非稳态的地下水位,并对小麦生长过程中的耗水量进行估算,进而为农业合理灌溉提供了科学的理论基础。  相似文献   
587.
Three identical model boxes were made from transparent plexiglass and angle iron. Using the method of sinking water and according to the sedimentary rhythm of saturated calcium carbonate(lime-mud) intercalated with cohesive soil,calcites with particle sizes diameters of ≤ 5 μm,10–15 μm and 23–30 μm as well as cohesive soil were sunk alternatively in water of three boxes to build three test models,each of which has a specific size of calcite. Pore water pressure gauges were buried in lime-mud layers at different depths in each model,and connected with a computer system to collect pore water pressures. By means of soil tests,physical property parameters and plasticity indices(Ip) were obtained for various grain-sized saturated lime-muds. The lime-muds with Ip ranging from 6.3 to 8.5(lower than 10) are similar to liquid saturated silt in the physical nature,indicating that saturated silt can be liquefied once induced by a strong earthquake. One model cart was pushed quickly along the length direction of the model so that its rigid wheels collided violently with the stone stair,thus generating an artificial earthquake with seismic wave magnitude greater than VI degree. When unidirectional cyclic seismic load of horizontal compression-tension-shear was imposed on the soil layers in the model,enough great pore water pressure has been accumulated within pores of lime-mud,resulting in liquefaction of lime-mud layers. Meanwhile,micro-fractures formed in each soil layer provided channels for liquefaction dewatering,resulting in formation of macroscopic liquefaction deformation,such as liquefied lime-mud volcanoes,liquefied diapir structures,vein-like liquefied structures and liquefied curls,etc. Splendid liquefied lime-mud eruption lasted for two to three hours,which is similar to the sand volcano eruption induced by strong earthquake. However,under the same artificial seismic conditions,development of macroscopic liquefied structures in three experimental models varied in shape,depth and quantity,indicating that excess pore water pressure ratios at initial liquefaction stage and complete liquefaction varied with depth. With size increasing of calcite particle in lime-mud,liquefied depth and deformation extent increase accordingly. The simulation test verifies for the first time that strong earthquakes may cause violent liquefaction of saturated lime-mud composed of micron-size calcite particles,uncovering the puzzled issue whether seafloor lime-mud can be liquefied under strong earthquake. This study not only provides the latest simulation data for explaining the earthquake-induced liquefied deformations of saturated lime-mud and seismic sedimentary events,but also is of great significance for analysis of foundation stability in marine engineering built on the soft calcium carbonate layers in neritic environment.  相似文献   
588.
The present work aims at introducing an efficient numerical approach based on the immersed interface method to estimate the effective thermal conductivity and permeability of geomaterials as porous media with either perfect or debonded interfaces. The first part deals with the problem of the overall thermal properties of a medium containing perfectly bonded inclusions. The evolution of the homogenized properties with respect to the properties of individual constituents, the volume fraction, the spatial distribution, and the shape of inclusions is highlighted. The second part of the paper is devoted to the case of imperfectly bonded inclusions. An extension of the immersed interface method in this context makes it possible to study other aspects that have an influence on the effective properties such as the interfacial resistance and the size of inclusions. The application of the proposed numerical tool to some porous rocks in partially saturated condition shows good agreement with the available experimental results and demonstrates the performance and the flexibility of the developed procedure.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
589.
This paper deals with the moisture exchanges occurring between soils and the surrounding atmosphere. Convective drying tests are performed on Awans silts at different drying temperatures and air relative humidities in order to reproduce the natural drying conditions. The experiments improve the understanding of the vapour transfers kinetics between the soil samples and the atmosphere. The experimental results are analysed assuming that the transfers take place in a boundary layer existing at the surface of the porous medium. The influence of the thermal conditions on the evaporation is also taken into account. In our model, coupled vapour and energy exchanges are controlled by mass and heat transfer coefficients characterizing the boundary layer. These coefficients are determined from the drying experiments. The modelling of the drying tests in non‐isothermal conditions is performed in order to validate the formulation of the vapour and heat exchanges. The numerical results present a good agreement with the kinetic of the materials desaturation determined during the tests. The analysis of the moisture transport mechanisms into the sample and at the boundary shows that at the beginning of the test, the drying is first achieved by the transport of moisture in its liquid form and its evaporation at the sample outer boundary in contact with the atmosphere. In a second step, vapour diffusion becomes predominant into the sample and it corresponds to the most important decrease of relative humidity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
590.
In this paper, a mathematical model is presented for the analysis of dynamic fracture propagation in the saturated porous media. The solid behavior incorporates a discrete cohesive fracture model, coupled with the flow in porous media through the fracture network. The double‐nodded zero‐thickness cohesive interface element is employed for the mixed mode fracture behavior in tension and contact behavior in compression. The crack is automatically detected and propagated perpendicular to the maximum effective stress. The spatial discretization is continuously updated during the crack propagation. Numerical examples from the hydraulic fracturing test and the concrete gravity dam show the capability of the model to simulate dynamic fracture propagation. The comparison is performed between the quasi‐static and fully dynamic solutions, and the performance of two analyses is investigated on the values of crack length and crack mouth opening. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号