首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3008篇
  免费   422篇
  国内免费   817篇
测绘学   258篇
大气科学   279篇
地球物理   532篇
地质学   1750篇
海洋学   396篇
天文学   521篇
综合类   165篇
自然地理   346篇
  2024年   2篇
  2023年   27篇
  2022年   84篇
  2021年   120篇
  2020年   115篇
  2019年   124篇
  2018年   102篇
  2017年   111篇
  2016年   136篇
  2015年   151篇
  2014年   177篇
  2013年   168篇
  2012年   177篇
  2011年   207篇
  2010年   159篇
  2009年   229篇
  2008年   219篇
  2007年   217篇
  2006年   217篇
  2005年   195篇
  2004年   185篇
  2003年   183篇
  2002年   142篇
  2001年   119篇
  2000年   105篇
  1999年   100篇
  1998年   97篇
  1997年   54篇
  1996年   50篇
  1995年   49篇
  1994年   40篇
  1993年   33篇
  1992年   27篇
  1991年   29篇
  1990年   24篇
  1989年   14篇
  1988年   17篇
  1987年   7篇
  1986年   8篇
  1985年   4篇
  1984年   6篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   1篇
  1978年   4篇
  1976年   1篇
  1975年   1篇
排序方式: 共有4247条查询结果,搜索用时 93 毫秒
21.
22.
23.
24.
25.
26.
何淼  饶竹 《岩矿测试》2008,27(1):12-16
采用环境友好的圆盘固相萃取新技术富集水体中有机氯农药和有机磷农药,分别用微池电子捕获检测器(μECD)和火焰光度检测器(FPD)气相色谱法检测,实现了水中有机氯和有机磷农药残留物的测定。结果表明,16种有机氯农药的平均回收率为64.7%~102%,精密度(RSD,n=6)为2.9%~15%;13种有机磷农药的平均回收率为65.9%~104%,精密度(RSD,n=6)为1.7%~17%。方法快速、灵敏、低污染,可用于水体中多种有机氯农药和有机磷农药的残留分析。  相似文献   
27.
This paper presents an example of application of the double solid reactant method (DSRM) of Accornero and Marini (Environmental Geology, 2007a), an effective way for modeling the fate of several dissolved trace elements during water–rock interaction. The EQ3/6 software package was used for simulating the irreversible water–rock mass transfer accompanying the generation of the groundwaters of the Porto Plain shallow aquifer, starting from a degassed diluted crateric steam condensate. Reaction path modeling was performed in reaction progress mode and under closed-system conditions. The simulations assumed: (1) bulk dissolution (i.e., without any constraint on the kinetics of dissolution/precipitation reactions) of a single solid phase, a leucite-latitic glass, and (2) precipitation of amorphous silica, barite, alunite, jarosite, anhydrite, kaolinite, a solid mixture of smectites, fluorite, a solid mixture of hydroxides, illite-K, a solid mixture of saponites, a solid mixture of trigonal carbonates and a solid mixture of orthorhombic carbonates. Analytical concentrations of major chemical elements and several trace elements (Cr, Mn, Fe, Ni, Cu, Zn, As, Sr and Ba) in groundwaters were satisfactorily reproduced. In addition to these simulations, similar runs for a rhyolite, a latite and a trachyte permitted to calculate major oxide contents for the authigenic paragenesis which are comparable, to a first approximation, with the corresponding data measured for local altered rocks belonging to the silicic, advanced argillic and intermediate argillic alteration facies. The important role played by both the solid mixture of trigonal carbonates as sequestrator of Mn, Zn, Cu and Ni and the solid mixture of orthorhombic carbonates as scavenger of Sr and Ba is emphasized.
Luigi Marini (Corresponding author)Email:
  相似文献   
28.
The Qinghai–Tibet Highway and Railway (the Corridor) across the Qinghai–Tibet Plateau traverses 670 km of permafrost and seasonally frozen-ground in the interior of the Plateau, which is sensitive to climatic and anthropogenic environmental changes. The frozen-ground conditions for engineering geology along the Corridor is complicated by the variability in the near-surface lithology, and the mosaic presence of warm permafrost and talik in a periglacial environment. Differential settlement is the major frost-effect problem encountered over permafrost areas. The traditional classification of frozen ground based on the areal distribution of permafrost is too generalized for engineering purposes and a more refined classification is necessary for engineering design and construction. A proposed classification of 51 zones, sub-zones, and sections of frozen ground has been widely adopted for the design and construction of foundations in the portion of the Corridor studied. The mean annual ground temperature (MAGT), near-surface soil types and moisture content, and active faults and topography are most commonly the primary controlling factors in this classification. However, other factors, such as local microreliefs, drainage conditions, and snow and vegetation covers also exert important influences on the features of frozen ground. About 60% of the total length of the Corridor studied possesses reasonably good frozen-ground conditions, which do not need special mitigative measures for frost hazards. However, other sections, such as warm and ice-rich or -saturated permafrost, particularly in the sections in wetlands, ground improvement measures such as elevated land bridges and passive or proactive cooling techniques need to be applied to ensure the long-term stability of thermally unstable, thick permafrost subsoils, and/or refill with non-frost-susceptible soils. Due to the long-history of the construction and management of the Corridor by various government departments, adverse impacts of construction and operation on the permafrost environment have been resulted. It is recommended that an integrated, executable plan for the routing of major construction projects within this transportation corridor be established and long-term monitoring networks installed for evaluating and mitigating the impact from anthropogenic and climatic changes in frozen-ground conditions.  相似文献   
29.
The current practice of slope stability analysis for a municipal solid waste (MSW) landfill usually overlooks the dependence of waste properties on the fill age or embedment depth. Changes in shear strength of MSW as a function of fill age were investigated by performing field and laboratory studies on the Suzhou landfill in China. The field study included sampling from five boreholes advanced to the bottom of the landfill, cone penetration tests and monitoring of pore fluid pressures. Twenty-six borehole samples representative of different fill ages (0 to 13 years) were used to perform drained triaxial compression tests. The field and laboratory study showed that the waste body in the landfill can be sub-divided into several strata corresponding to different ranges of fill age. Each of the waste strata has individual composition and shear strength characteristics. The triaxial test results showed that the MSW samples exhibited a strain-hardening and contractive behavior. As the fill age of the waste increased from 1.7 years to 11 years, the cohesion mobilized at a strain level of 10% was found to decrease from 23.3 kPa to 0 kPa, and the mobilized friction angle at the same strain level increasing from 9.9° to 26°. For a confinement stress level greater than 50 kPa, the shear strength of the recently-placed MSW seemed to be lower than that of the older MSW. This behavior was consistent with the cone penetration test results. The field measurement of pore pressures revealed a perched leachate mound above an intermediate cover of soils and a substantial leachate mound near the bottom of the landfill. The measurements of shear strength properties and pore pressures were utilized to assess the slope stability of the Suzhou landfill.  相似文献   
30.
Field Measurement of Suction, Water Content, and Water Permeability   总被引:1,自引:0,他引:1  
This paper presents a review of techniques for field measurement of suction, water content, and water hydraulic conductivity (permeability). Main problems in the use of field tensiometers are addressed and hints on how to improve tensiometer performance are given. Advantages and limitations of instruments for indirect measurement of suction including electrical conductivity sensors, thermal conductivity sensors, dielectric permittivity sensors, filter paper, and psychrometer are discussed. Techniques for water content measurement based on dielectric methods are then presented. These include time and amplitude domain reflectometry and capacitance. Finally, a brief overview of methods for measurement of water permeability in the field is presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号