首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3741篇
  免费   699篇
  国内免费   1203篇
测绘学   171篇
大气科学   459篇
地球物理   822篇
地质学   2655篇
海洋学   738篇
天文学   116篇
综合类   219篇
自然地理   463篇
  2024年   20篇
  2023年   48篇
  2022年   147篇
  2021年   169篇
  2020年   167篇
  2019年   184篇
  2018年   160篇
  2017年   189篇
  2016年   201篇
  2015年   212篇
  2014年   225篇
  2013年   267篇
  2012年   272篇
  2011年   260篇
  2010年   207篇
  2009年   277篇
  2008年   276篇
  2007年   277篇
  2006年   245篇
  2005年   208篇
  2004年   226篇
  2003年   163篇
  2002年   173篇
  2001年   140篇
  2000年   143篇
  1999年   136篇
  1998年   117篇
  1997年   123篇
  1996年   76篇
  1995年   68篇
  1994年   69篇
  1993年   42篇
  1992年   29篇
  1991年   20篇
  1990年   23篇
  1989年   24篇
  1988年   15篇
  1987年   7篇
  1986年   9篇
  1985年   11篇
  1984年   5篇
  1983年   6篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1976年   1篇
排序方式: 共有5643条查询结果,搜索用时 15 毫秒
91.
Absorption of solar radiation within the thermal molecular sublayer of the ocean can modify the temperature difference across the cool skin as well as the air-sea gas transfer. Our model of renewal type is based on the assumption that the thermal and diffusive molecular sublayers below the ocean surface undergo cyclic growth and destruction, the heat and gas transfer between the successive burst events are performed by molecular diffusion. The model has been upgraded to include heating due to solar radiation. The renewal time is parameterized as a function of the surface Richardson number and the Keulegan number. A Rayleigh number criterion characterizes the convective instability of the cool skin under solar heating. Under low wind speed conditions, the solar heating can damp the convective instability, strongly increasing the renewal time and correspondingly decreasing the interfacial gas exchange. In the ocean, an additional convective instability caused by salinity flux due to evaporation becomes of importance in such cases. The new parameterization is compared with the cool skin data obtained in the western equatorial Pacific during the Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment in February 1993. In combination with a model of the diurnal thermocline it describes main features of the field data both in nighttime and daytime. Under low wind speed conditions (< 5 m s-1) diurnal variations of the sea surface temperature due to the formation of a diurnal thermocline were substantially larger than those across the cool skin. Under wind speeds > 5 m s-1, diurnal variations of the surface temperature due to the variations of the thermal molecular sublayer become more important.  相似文献   
92.
Field tests of hydraulic conductivity (e.g., injection test, pumping test, etc.) in low permeability formations are subject to censoring due to the detection limit of the instruments used. An iterative method of estimating the mean and variance of hydraulic conductivity data with a presumed log-normal distribution function is presented. This method accounts for the data that are actually below the lower detection limit (called truncated data) and thus gives distribution parameters that are more representative for the underlying distribution. The proposed method is then tested on two simulated normally distributed random datasets having different variances. The results show that the means and variances estimated by the proposed method are very accurate. Finally, the method is used to estimate the mean and variance of hydraulic conductivity data from single hole water injection tests in a fractured geological formation.  相似文献   
93.
Lake Manitoba, the largest lake in the Prairie region of North America, contains a fine-grained sequence of late Pleistocene and Holocene sediment that documents a complex postglacial history. This record indicates that differential isostatic rebound and changing climate have interacted with varying drainage basin size and hydrologic budget to create significant variations in lake level and limnological conditions. During the initial depositional period in the basin, the Lake Agassiz phase (12–9 ka), 18O of ostracodes ranged from –16 to –5 (PDB), implying the lake was variously dominated by cold, dilute glacial meltwater and warm to cold, slightly saline water.Candona subtriangulata, which prefers cold, dilute water, dominates the most negative 18O intervals, when the basin was part of proglacial Lake Agassiz. At times during this early phase, the 18O of the lake abruptly shifted to higher values; euryhaline taxa such asC. rawsoni orLimnocythere ceriotuberosa, and halobiont taxa such asL. staplini orL. sappaensis are dominant in these intervals. This positive covariance of isotope and ostracode records implies that the lake level episodically fell, isolating the Lake Manitoba basin from the main glacial lake.18O values from inorganic endogenic Mg-calcite in the post-Agassiz phase of Lake Manitoba trend from –4 at 8 ka to –11 at 4.5 ka. We interpret that this trend indicates a gradually increasing influence of isotopically low (–20 SMOW) Paleozoic groundwater inflow, although periods of increased evaporation during this time may account for zones of less negative isotopic values. The 18O of this inorganic calcite abruptly shifts to higher values (–6) after 4.5 ka due to the combined effects of increased evaporative enrichment in a closed basin lake and the increased contribution of isotopically high surface water inflow on the hydrologic budget. After 2 ka, the 18O of the Mg-calcite fluctuates between –13 and –7, implying short-term variability in the lake's hydrologic budget, with values indicating the lake varied from outflow-dominated to evaporation-dominated. The 13C values of Mg-calcite remain nearly constant from 8 to 4.5 ka and then trend to higher values upward in the section. This pattern suggests primary productivity in the lake was initially constant but gradually increased after 4.5 ka.This is the sixth in a series of papers published in this issue on the paleolimnology of arid regions. These papers were presented at the Sixth International Palaeolimnology Symposium held 19–21 April, 1993 at the Australian National University, Canberra, Australia. Dr A. R. Chivas served as guest editor for these papers.  相似文献   
94.
Wallywash Great Pond (17° 57 N, 77° 48 W, 7 m a.s.l.) is the largest perennial lake in Jamaica. It occupies a fault trough within the karstic White Limestone. The Great Pond is a hardwater lake with a pH of 8.2–8.6 and an alkalinity of 3.6–3.9 meq 1–1. Its chemistry is strongly influenced by the spring discharge from the limestone. The lake water is subject to degassing, evaporation and bicarbonate assimilation by submerged plants and algae, resulting in marl precipitation. A 9.23 m core (WGP2), taken from a water depth of 2.8 m, was analysed for magnetic susceptibility, loss-on-ignition, carbonate content, mole % MgCO3 in calcite, and stable isotopes in the fine carbonate fraction. The chronology is based on ten14C and four U/Th dates. Four main sediment types alternate in the core: marl; organic, calcareous mud; organic mud or peat; and earthy, brown, calcareous mud. The marls represent periods of wet/warm climate during sea-level highstands and the organic deposits, shallower, swampy conditions. In contrast, the brown, calcareous muds were laid down when the lake was dry or ephemeral. The last interglacial (120 000- 106 000 yr BP) is represented by three distinct marl units. After a dry interval, stable, wet/warm conditions set in from 106 000 to 93 000 yr BP. A dry/cool climate prevailed between 93 000 and at least 9500 yr BP. Three subsequent cycles of alternating wet and dry conditions culminated in flooding of the basin by the Black River during the late Holocene. These recent events cannot be accurately dated by14C due to significant and temporally-variable inputs of dead carbon from the springs.  相似文献   
95.
In a simplified model of the Earth-Moon-Sun system based on the restricted circular 3-dimensional 3-body problem, it is possible to find numerically a set of 8 periodic orbits whose time evolutions closely resemble that of the Moon's orbit. These orbits have a period of 223 synodic months (i.e. the period of the Saros cycle known for more than two millennia as a means of predicting eclipses), and are characterized by a secular rotation of the argument of perigee . Periodic orbits of longer durations exhibiting this last feature are very abundant in Earth-Moon-Sun dynamical models. Their arrangement in the space of the mean orbital elements- for various values of the lunar mean motion is presented.  相似文献   
96.
为研究江西安福地区水文地球化学特征及控制因素, 本文采集了15组样品, 采用水化学、同位素分析等方法进行研究。结果表明: 研究区地热水以Na-HCO3型水为主, 地下水以HCO3-Na·Ca型为主, 地表水由西南向东北从HCO3-Na·Ca向HCO3-Ca型水演化。水化学组分演化过程主要受岩石风化作用控制, 地层封闭性较差, 水中的Na+、HCO– 3、Sr2+来源于硅酸岩风化溶解。由稳定同位素特征可知, 研究区地热水补给来源为大气降水。研究区热储温度为49.8~101.4 ℃, 地热水循环深度为1 502.6~1 513.6 m。热水在沿断裂带上升过程中与浅层冷水发生混合, 其混合比例为76.1%~87.5%。研究成果为安福地区水循环演化提供依据, 有利于地热资源的合理开采与保护。  相似文献   
97.
杨凯  戴紧根  沈洁  张文仓  赵玲玲 《地质学报》2022,96(12):4149-4166
蛇纹岩对地球深部和浅部的元素循环以及氧化还原状态调节具有非常重要的作用。蛇纹岩中的流体活动性元素(fluid- mobile element, FME)是揭示地幔岩石水化、脱水以及元素循环的关键。本文系统收集和分析了前人报道的不同构造环境的蛇纹岩矿物化学、全岩微量元素和非传统稳定同位素(Fe、Zn、Cu)的组成特征,试图从多个角度总结蛇纹岩脱水过程的元素迁移规律及流体性质。蛇纹岩主要矿物蛇纹石微量元素含量具有以下主要特征:① 不同变质程度的蛇纹岩中的蛇纹石既包含轻稀土元素(light rare earth element, LREE)富集,又包含LREE亏损的特征;② 纤蛇纹石的REE和微量元素分布在利蛇纹石和叶蛇纹石的范围内,利蛇纹石重稀土元素(heavy rare earth element, HREE)整体上略高于叶蛇纹石且更加富集FME;③ 通过中度不相容元素与REE含量相结合,能够较好地区分橄榄石和辉石蛇纹石化所形成的蛇纹石,即辉石形成的蛇纹石富集相容元素(如Sc、Zn、Cr、Y和Ti等)并具有较高的HREE,而橄榄石形成的蛇纹石则表现为平坦且整体较低的REE分布型式。在蛇纹岩全岩微量元素和稀土元素(rare earth element, REE)含量方面,不同构造环境的蛇纹岩具有较大范围的重叠,但也有一定的差异:① 慢速扩张的印度洋中脊蛇纹岩REE和微量元素含量要整体高于快速扩张的大西洋中脊和太平洋中脊的蛇纹岩;② 马里亚纳蛇纹岩泥相比于蛇纹岩和蛇纹石化纯橄岩具有更高的REE和微量元素,而蛇纹石化纯橄岩相比于蛇纹岩则具有相对低的REE及流体不活动性元素含量。因此,利用微量元素的含量在区分不同环境的蛇纹岩方面存在一定的困难。但是,碱金属元素与U元素含量及其相应的比值,则可以较明显区分出大洋蛇纹岩和弧前蛇纹岩。目前已发表的蛇纹岩Fe、Zn、Cu同位素数据表明:① 蛇绿岩中的蛇纹岩Fe和Zn同位素的分馏与其变质程度密切相关。蛇纹岩在进变质过程中δ 56Fe值与Fe 3+/∑Fe值呈负相关,而Zn含量和δ 66Zn值则呈现正相关,表明蛇纹岩变质脱水能够释放氧化性流体;② 与橄榄岩相比,蛇纹岩具有明显低的δ 65Cu值,表明橄榄岩蛇纹石化过程中存在氧化性流体的加入。蛇纹岩Fe、Zn、Cu同位素在示踪流体性质和氧化还原状态方面有很大潜力,对壳幔系统的化学循环具有重要意义。  相似文献   
98.
Researchontemporalandspatialdistribu┐tion,evolutionarycharacterandmechanismofcrustaldeformationfieldbeforeandaftertheTangshan...  相似文献   
99.
13C/12C ratios for a number of High Arctic vascular plants (51 determinations), mosses (11), and freshwater algae (11) show considerable variation, particularly among the freshwater algae (range from-6.9 to -36.3). In some cases the stable carbon ratios on modern and fossil materials provide guidance as to whether marine waters formerly occupied a given pond or lake basin. In other cases the 13C values for algae collected along the present-day shore of a pond or lake bear no relation to the values obtained on constituents preserved within the bottom sediments, suggesting that major changes have occurred in the last few thousand years.Geological Survey of Canada Contribution No. 17291. Contribution No. 41 from the Cape Herschel Project.  相似文献   
100.
Eight DSDP/ODP cores were analyzed for major ion concentrations and δ37Cl values of water-soluble chloride (δ37ClWSC) and structurally bound chloride (δ37ClSBC) in serpentinized ultramafic rocks. This diverse set of cores spans a wide range in age, temperature of serpentinization, tectonic setting, and geographic location of drilled serpentinized oceanic crust. Three of the cores were sampled at closely spaced intervals to investigate downhole variation in Cl concentration and chlorine isotope composition.The average total Cl content of all 86 samples is 0.26 ± 0.16 wt.% (0.19 ± 0.10 wt.% as water-soluble Cl (XWSC) and 0.09 ± 0.09 wt.% as structurally bound Cl (XSBC)). Structurally bound Cl concentration nearly doubles with depth in all cores; there is no consistent trend in water-soluble Cl content among the cores. Chlorine isotope fractionation between the structurally bound Cl site and the water-soluble Cl site varies from − 1.08‰ to + 1.16‰, averaging to + 0.21‰. Samples with negative fractionations may be related to reequilibration of the water-soluble chloride with seawater post-serpentinite formation. Six of the cores have positive bulk δ37Cl values (+ 0.05‰ to + 0.36‰); the other two cores (173-1068A (Leg-Hole) and 84-570) have negative bulk δ37Cl values (− 1.26‰ and − 0.54‰). The cores with negative δ37Cl values also have variable Cl / SO42 ratios, in contrast to all other cores. The isotopically positive cores (153-920D and 147-895E) show no isotopic variation with depth; the isotopically negative core (173-1068A) decreases by ∼1‰ with depth for both the water-soluble and structurally bound Cl fractions.Non-zero bulk δ37Cl values indicate Cl in serpentinites was incorporated during original hydration and is not an artifact of seawater infiltration during drilling. Cores with positive δ37Cl values are most likely explained by open system fractionation during hydrothermal alteration, with preferential incorporation of 37Cl from seawater into the serpentinite and loss of residual light Cl back to the ocean. Fluid / rock ratios were probably low as evidenced by the presence of water-soluble salts. The two isotopically negative cores are characterized by a thick overlying sedimentary package that was in place prior to serpentinization. We believe the low δ37Cl values of these cores are a result of hydration of ultramafic rock by infiltrating aqueous pore fluids from the overlying sediments. The resulting serpentinites inherit the characteristic negative δ37Cl values of the pore waters. Chlorine stable isotopes can be used to identify the source of the serpentinizing fluid and ultimately discern chemical and tectonic processes involved in serpentinization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号