首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   336篇
  免费   78篇
  国内免费   14篇
测绘学   4篇
大气科学   19篇
地球物理   324篇
地质学   33篇
海洋学   4篇
综合类   7篇
自然地理   37篇
  2024年   5篇
  2023年   1篇
  2022年   8篇
  2021年   33篇
  2020年   28篇
  2019年   25篇
  2018年   18篇
  2017年   17篇
  2016年   20篇
  2015年   10篇
  2014年   30篇
  2013年   94篇
  2012年   18篇
  2011年   10篇
  2010年   12篇
  2009年   8篇
  2008年   10篇
  2007年   13篇
  2006年   9篇
  2005年   16篇
  2004年   3篇
  2003年   6篇
  2002年   4篇
  2001年   2篇
  2000年   6篇
  1999年   2篇
  1997年   5篇
  1996年   6篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
排序方式: 共有428条查询结果,搜索用时 171 毫秒
91.
Seasonal and spatial variability in scaling, correlation and wavelet variance parameter of daily streamflow data were investigated using 56 gauging stations from five basins located in two different climate zones. Multifractal temporal scaling properties were detected using a multiplicative cascade model. The wavelet variance parameter yielded persistence properties of the streamflow time series. Seasonal variations were found to be significant in that winter and spring seasons where large‐scale frontal events are dominant showed higher long‐term correlations and less multifractality than did summer and fall seasons. Coherent spatial variations were apparent. The Neches River basin located in a subtropic humid climate zone exhibited high persistence and long‐term correlation as well as less multifractality as compared with other basins. It is found that larger drainage areas tend to have smaller multifractality and higher persistence structure, and this tendency becomes apparent in regions that receive large amounts of precipitation and decreases towards arid regions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
92.
Remote sensing is an important source of snow‐cover extent for input into the Snowmelt Runoff Model (SRM) and other snowmelt models. Since February 2000, daily global snow‐cover maps have been produced from data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS). The usefulness of this snow‐cover product for streamflow prediction is assessed by comparing SRM simulated streamflow using the MODIS snow‐cover product with streamflow simulated using snow maps from the National Operational Hydrologic Remote Sensing Center (NOHRSC). Simulations were conducted for two tributary watersheds of the Upper Rio Grande basin during the 2001 snowmelt season using representative SRM parameter values. Snow depletion curves developed from MODIS and NOHRSC snow maps were generally comparable in both watersheds: satisfactory streamflow simulations were obtained using both snow‐cover products in larger watershed (volume difference: MODIS, 2·6%; NOHRSC, 14·0%) and less satisfactory streamflow simulations in smaller watershed (volume difference: MODIS, −33·1%; NOHRSC, −18·6%). The snow water equivalent (SWE) on 1 April in the third zone of each basin was computed using the modified depletion curve produced by the SRM and was compared with in situ SWE measured at Snowpack Telemetry sites located in the third zone of each basin. The SRM‐calculated SWEs using both snow products agree with the measured SWEs in both watersheds. Based on these results, the MODIS snow‐cover product appears to be of sufficient quality for streamflow prediction using the SRM in the snowmelt‐dominated basins. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
93.
This study proposes a new monthly ensemble streamflow prediction (ESP) forecasting system that can update the ESP in the middle of a month to reflect the meteorological and hydrological variations during that month. The reservoir operating policies derived from a sampling stochastic dynamic programming model using ESP scenarios updated three times a month were applied to the Geum River basin to measure the value of updated ESP for 21 years with 100 initial storage combinations. The results clearly demonstrate that updating the ESP scenario improves the accuracy of the forecasts and consequently their operational benefit. This study also proves that the accuracy of the ESP scenario, particularly when high flows occur, has a considerable effect on the reservoir operations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
94.
Following wildfires, the probability of flooding and debris flows increase, posing risks to human lives, downstream communities, infrastructure, and ecosystems. In southern California (USA), the Rowe, Countryman, and Storey (RCS) 1949 methodology is an empirical method that is used to rapidly estimate post-fire peak streamflow. We re-evaluated the accuracy of RCS for 33 watersheds under current conditions. Pre-fire peak streamflow prediction performance was low, where the average R2 was 0.29 and average RMSE was 1.10 cms/km2 for the 2- and 10-year recurrence interval events, respectively. Post-fire, RCS performance was also low, with an average R2 of 0.26 and RMSE of 15.77 cms/km2 for the 2- and 10-year events. We demonstrated that RCS overgeneralizes watershed processes and does not adequately represent the spatial and temporal variability in systems affected by wildfire and extreme weather events and often underpredicted peak streamflow without sediment bulking factors. A novel application of machine learning was used to identify critical watershed characteristics including local physiography, land cover, geology, slope, aspect, rainfall intensity, and soil burn severity, resulting in two random forest models with 45 and five parameters (RF-45 and RF-5, respectively) to predict post-fire peak streamflow. RF-45 and RF-5 performed better than the RCS method; however, they demonstrated the importance and reliance on data availability. The important parameters identified by the machine learning techniques were used to create a three-dimensional polynomial function to calculate post-fire peak streamflow in small catchments in southern California during the first year after fire (R2 = 0.82; RMSE = 6.59 cms/km2) which can be used as an interim tool by post-fire risk assessment teams. We conclude that a significant increase in data collection of high temporal and spatial resolution rainfall intensity, streamflow, and sediment loading in channels will help to guide future model development to quantify post-fire flood risk.  相似文献   
95.
96.
Estimation of low flows in rivers continues to be a vexing problem despite advances in statistical and process‐based hydrological models. We develop a method to estimate minimum streamflow at seasonal to annual timescales from measured streamflow based on regional similarity in the deviations of daily streamflow from minimum streamflow for a period of interest. The method is applied to 1,019 gauged sites in the Western United States for June to December 2015. The gauges were clustered into six regions with distinct timing and magnitude of low flows. A gamma distribution was fit each day to the deviations in specific discharge (daily streamflow divided by drainage area) from minimum specific discharge for gauges in each region. The Kolmogorov–Smirnov test identified days when the gamma distribution was adequate to represent the distribution of deviations in a region. The performance of the gamma distribution was evaluated at gauges by comparing daily estimates of minimum streamflow with estimates from area‐based regression relations for minimum streamflow. Each region had at least 8 days during the period when streamflow measurements would provide better estimates than the regional regression equation, but the number of such days varied by region depending on aridity and homogeneity of streamflow within the region. Synoptic streamflow measurements at ungauged sites have value for estimating minimum streamflow and improving the spatial resolution of hydrological model in regions with streamflow‐gauging networks.  相似文献   
97.
Around the world, long-term changes in the timing and magnitude of streamflow are testing the ability of large managed water resource systems constructed in the 20th century to continue to meet objectives in the 21st century. Streamflow records for unregulated rivers upstream of reservoirs can be combined with records downstream of reservoirs using a paired-watershed framework and concepts of water resource system performance to assess how reservoir management has responded to long-term change. Using publicly available data, this study quantified how the intra-annual timing of inflows and outflows of 25 major reservoirs has shifted, how management has responded, and how this has influenced reliability and vulnerability of the water resource system in the 668,000 km2 Columbia River basin from 1950 to 2012. Reservoir inflows increased slightly in early spring and declined in late spring to early fall, but reservoir outflows increased in late summer from 1950 to 2012. Average inflows to reservoirs in the low flow period exceeded outflows in the1950s, but inflows are now less than outflows. Reservoirs have increased hedging, that is, they have stored more water during the spring, in order to meet the widening gap between inflows and outflows during the summer low flow period. For a given level of reliability (the fraction of time flow targets were met), vulnerability (the maximum departure from the flow target) was greater during periods with lower than average inflows. Thus, the water management system in this large river basin has adjusted to multi-decade trends of declining inflows, but vulnerability, that is, the potential for excess releases in spring and shortfalls in summer, has increased. This study demonstrates the value of combining publicly available historical data on streamflow with concepts from paired-watershed analyses and metrics of water resource performance to detect, evaluate, and manage water resource systems in large river basins.  相似文献   
98.
99.
Linked hydrologic, hydraulic, and ecological models can facilitate planning and implementing water releases from reservoirs to achieve ecological objectives along rivers. We applied a flow-ecology model, the Ecosystem Functions Model (HEC-EFM), to the Bill Williams River in southwestern USA to estimate areas suitable for recruitment of riparian tree seedlings in the context of managing flow releases from a large dam for riparian restoration. Ecological variables in the model included timing of seed dispersal, tolerable rates of flow recession, and tolerable duration of inundation following germination and early seedling establishment for native Fremont cottonwood and Goodding's willow, and non-native tamarisk. Hydrological variables included peak flow timing, rate of flow recession following the peak, and duration of inundation. A one-dimensional hydraulic model was applied to estimate stage-discharge relationships along ~58 river kilometres. We then used HEC-EFM to apply relationships between seedling ecology and streamflow to link hydrological dynamics with ecological response. We developed and validated HEC-EFM based on an examination of seedling recruitment following an experimental flow release from Alamo Dam in spring 2006. The model predicted the largest area of potential recruitment for cottonwood (280–481 ha), with smaller areas predicted for willow (174–188 ha) and tamarisk (59–60 ha). Correlations between observed and predicted patches with successful seedling recruitment for areas within 40 m of the main channel ranged from 0.66 to 0.94. Finally, we examined arrays of hydrographs to identify which are most conducive to seedling recruitment along the river, given different combinations of peak flow, recession rate, and water volume released. Similar application of this model could be useful for informing reservoir management in the context of riparian restoration along other rivers facing similar challenges.  相似文献   
100.
Despite the low permeability of claypan soils, groundwater has been heavily contaminated by nitrate in agricultural watersheds dominated by claypan soils. However, it is unclear how nitrate concentrations in groundwater affect stream water quality. In this study, streamflow pathways were investigated using natural geochemical tracers in the 73-km2 Goodwater Creek Experimental Watershed in northeastern Missouri. Samples were collected from 2011 to 2017 from stream water (weekly-biweekly), precipitation (event-based), groundwater in 25 wells with screened depths varying from 2 to 16 m (bimonthly–seasonal) and interflow above the claypan in 7 shallow piezometers (weekly–monthly). The results of endmember mixing analysis using major ions indicate that streamflow was dominated by near-surface runoff (59 ± 20%), followed by interflow (25 ± 16%) and groundwater (16 ± 13%). Analysis of endmember distances using the mixing space defined by stream water chemistry suggests that groundwater contributions to streamflow came primarily from the intermediate to deep glacial till aquifer near and below 8 m. Near-surface runoff was persistent and dominant even after isolated precipitation events during a prolonged dry period. It is hypothesised that the alluvial aquifer near stream banks acts as a mixing zone to receive and store various source waters, resulting in persistent delivery of runoff to the stream. Groundwater, even though its contribution was limited, plays a significant role in regulating streamflow NO3 concentrations. This study significantly improves our understanding of claypan hydrology and will lead to the development of models and decision support tools for implementation of management practices that improve groundwater and stream water quality in restrictive layer watersheds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号