首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   891篇
  免费   163篇
  国内免费   194篇
测绘学   29篇
大气科学   16篇
地球物理   354篇
地质学   233篇
海洋学   501篇
天文学   1篇
综合类   47篇
自然地理   67篇
  2024年   2篇
  2023年   8篇
  2022年   16篇
  2021年   34篇
  2020年   36篇
  2019年   37篇
  2018年   37篇
  2017年   34篇
  2016年   40篇
  2015年   42篇
  2014年   52篇
  2013年   73篇
  2012年   53篇
  2011年   62篇
  2010年   67篇
  2009年   68篇
  2008年   71篇
  2007年   57篇
  2006年   67篇
  2005年   47篇
  2004年   44篇
  2003年   40篇
  2002年   28篇
  2001年   37篇
  2000年   23篇
  1999年   36篇
  1998年   21篇
  1997年   20篇
  1996年   12篇
  1995年   14篇
  1994年   12篇
  1993年   10篇
  1992年   5篇
  1991年   8篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1985年   4篇
  1984年   8篇
  1983年   4篇
  1982年   3篇
  1981年   5篇
  1976年   1篇
排序方式: 共有1248条查询结果,搜索用时 15 毫秒
171.
总悬浮物浓度(CTSM)是水质评价的重要参数.为了提高内陆Ⅱ类水体总悬浮物浓度估算的精度,利用主成分分析方法对2009年4月太湖水体实测高光谱数据进行降维处理,进而以不同数量的主成分作为变量,分别构建总悬浮颗粒物浓度的多元线性回归估算模型并比较这些模型的效果,从而确定最优的主分量个数;结合近年运行的高光谱传感器,对模型的适用性进行评价.结果表明:①前三个主成分(PC1PC2PC3)从不同侧面涵盖了悬浮物浓度信息,它们与ln(CTSM)的相关系数分别为0.728、0.401和0.403;②当主成分个数为6时,模型达到最优;模型的精度高于4个传统经验模型;③在400~850 nm之间,波段数大于45的高光谱传感器数据都能利用主成分分析的方法构建精度较高的总悬浮物浓度估算模型;此外,MERIS、HJ1-HSI、Hyperion和CHRIS这些常用的高光谱传感器的波段设置,都适合于主成分建模.  相似文献   
172.
太湖水体中悬浮物的静沉降特征   总被引:8,自引:0,他引:8  
陈鋆  高光  李一平  王珂  逢勇 《湖泊科学》2006,18(5):528-534
本文分别采用斯托克斯沉降速率公式和重复深度吸管法计算了2005年4月、5月间在太湖进行的四次静沉降模拟实验中的沉降速度.结果表明:1)太湖水体中悬浮物的沉降属于絮凝沉降.2)水体中悬浮物浓度与沉降时间均呈现出明显的指数衰减规律(R~2>0.80),悬浮物中无机物含量较高时这种规律更为明显(R~2≥0.99).3)悬浮物浓较低时,太湖悬浮物的沉降速率与水体中的悬浮物浓度无明显的相关关系;而悬浮物浓度较高时,沉降速率随悬浮物浓度升高而增大.经拟合沉降速度(ω)与悬浮物浓度(C)之间符合Logistic曲线ω=0.021/(1 exp(-0.026(C-166.3))),R~2=0.98,n=54.4),斯托克斯公式可用来粗略估算太湖悬浮物的沉降速率,而重复深度吸管法则适合于较精确地计算太湖悬浮物的沉降速率.但在计算时须注意根据悬浮物的特性,选取其特征沉降速率.本文计算得到的太湖悬浮物的沉降速率范围为0.002 cm/s-0.005 cm/s.  相似文献   
173.
We analyzed variation of channel–floodplain suspended sediment exchange along a 140 km reach of the lower Amazon River for two decades (1995–2014). Daily sediment fluxes were determined by combining measured and estimated surface sediment concentrations with river–floodplain water exchanges computed with a two‐dimensional hydraulic model. The average annual inflow to the floodplain was 4088 ± 2017 Gg yr?1 and the outflow was 2251 ± 471 Gg yr?1, respectively. Prediction of average sediment accretion rate was twice the estimate from a previous study of this same reach and more than an order of magnitude lower than an estimate from an earlier regional scale study. The amount of water routed through the floodplain, which is sensitive to levee topography and increases exponentially with river discharge, was the main factor controlling the variation in total annual sediment inflow. Besides floodplain routing, the total annual sediment export depended on the increase in sediment concentration in lakes during floodplain drainage. The recent increasing amplitude of the Amazon River annual flood over two decades has caused a substantial shift in water and sediment river–floodplain exchanges. In the second decade (2005–2014), as the frequency of extreme floods increased, annual sediment inflow increased by 81% and net storage increased by 317% in relation to the previous decade (1995–2004). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
174.
Small, steep watersheds are prolific sediment sources from which sediment flux is highly sensitive to climatic changes. Storm intensity and frequency are widely expected to increase during the 21st century, and so assessing the response of small, steep watersheds to extreme rainfall is essential to understanding landscape response to climate change. During record winter rainfall in 2016–2017, the San Lorenzo River, coastal California, had nine flow peaks representing 2–10‐year flood magnitudes. By the third flood, fluvial suspended sediment showed a regime shift to greater and coarser sediment supply, coincident with numerous landslides in the watershed. Even with no singular catastrophic flood, these flows exported more than half as much sediment as had a 100‐year flood 35 years earlier, substantially enlarging the nearshore delta. Annual sediment load in 2017 was an order of magnitude greater than during an average‐rainfall year, and 500‐fold greater than in a recent drought. These anomalous sediment inputs are critical to the coastal littoral system, delivering enough sediment, sometimes over only a few days, to maintain beaches for several years. Future projections of megadroughts punctuated by major atmospheric‐river storm activity suggest that interannual sediment‐yield variations will become more extreme than today in the western USA, with potential consequences for coastal management, ecosystems, and water‐storage capacity. The occurrence of two years with major sediment export over the past 35 years that were not associated with extremes of the El Niño Southern Oscillation or Pacific Decadal Oscillation suggests caution in interpreting climatic signals from marine sedimentary deposits derived from small, steep, coastal watersheds, to avoid misinterpreting the frequencies of those cycles. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   
175.
176.
The Yarlung Tsangpo River, which flows from west to east across the southern part of the Tibetan Plateau, is the longest river on the plateau and an important center for human habitation in Tibet. Suspended sediment in the river can be used as an important proxy for evaluating regional soil erosion and ecological and environmental conditions. However, sediment transport in the river is rarely reported due to data scarcity. Results from this study based on a daily dataset of 3 years from four main stream gauging stations confirmed the existence of great spatiotemporal variability in suspended sediment transport in the Yarlung Tsangpo River, under interactions of monsoon climate and topographical variability. Temporally, sediment transport or deposition mainly occurred during the summer months from July to September, accounting for 79% to 93% of annual gross sediment load. This coincided with the rainy season from June to August that accounted for 51% to 80% of annual gross precipitation and the flood period from July to September that accounted for approximately 60% of annual gross discharge. The highest specific sediment yield of 177.6 t/km2/yr occurred in the upper midstream with the highest erosion intensity. The lower midstream was dominated by deposition, trapping approximately 40% of total sediment input from its upstream area. Sediment load transported to the midstream terminus was 10.43 Mt/yr with a basin average specific sediment yield of 54 t/km2/yr. Comparison with other plateau‐originated rivers like the upper Yellow River, the upper Yangtze River, the upper Indus River, and the Mekong River indicated that sediment contribution from the studied area was very low. The results provided fundamental information for future studies on soil and water conservation and for the river basin management. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
177.
声学多普勒流速剖面仪ADP不仅可以测量流速,其记录的声强信号还包含有泥沙浓度的信息,为探讨ADP测悬沙浓度的可行性,本文根据长江口区现场六点法测得的悬沙浓度,对输出信号进行标定,反演获得悬沙浓度。结果表明在500kHz的工作频率下,计算出的悬沙浓度在中上层水体平均误差较小(25%~38%),但要用ADP测整个垂直剖面的悬沙浓度还有待做进一步试验研究。  相似文献   
178.
The Himalayan environment has, until recently, been perceived to be in a critical state of environmental decline, resulting from rapid population growth and associated land‐use change. Recent research, however, has emphasized the difficulty of developing an objective appraisal of the state of the environment in a region where empirical data are scarce and unstructured and where an understanding of the spatial and temporal dynamics of natural environmental processes remains highly uncertain. This paper presents results from an intensive three‐year project designed to help address the regional empirical deficit, establish detailed baseline environmental data and to gain an insight into storm period and seasonal suspended sediment dynamics. The instrumentation, calibration and analysis of high‐frequency infrared turbidimetric records from a number of small subcatchments in the Nepal Middle Hills are reported. Storm period and seasonal variation in turbidity and suspended sediment are examined and hysteresis patterns explored and explained. A variety of methods to estimate seasonal suspended sediment yield in a mixed land‐use catchment are examined, and found to vary by up to a factor of five. Despite the inherent uncertainty, all estimates of catchment sediment yield are found to be high with respect to erosion plot studies from the local area, and this suggests the importance of riparian and channel erosion as major sediment sources, a finding consistent with other regional studies. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
179.
An on-board technique was developed that combined discharge-weighted pumping to a high-speed continuous-flow centrifuge for isolation of the particulate-sized material with ultrafiltration for isolation of colloid-sized material. In order to address whether these processes changed the particle sizes during isolation, samples of particles in suspension were collected at various steps in the isolation process to evaluate changes in particle size. Particle sizes were determined using laser light-scattering photon correlation spectroscopy and indicated no change in size during the colloid isolation process. Mississippi River colloid particle sizes from twelve sites from Minneapolis to below New Orleans were compared with sizes from four tributaries and three seasons, and from predominantly autochthonous sources upstream to more allochthonous sources downstream. © 1998 John Wiley & Sons, Ltd.  相似文献   
180.
鄱阳湖是我国重要的湿地生态系统,对调节流域的水沙变化有着重要作用。由于鄱阳湖湖区面积广,内部差异大,单一的悬浮泥沙反演模型不足以准确反演出湖区的悬浮泥沙浓度。以实测的反射光谱数据、泥沙浓度数据为基础,提出一种基于分类后的反演模型,即根据实测数据的光谱形态特征分类出5种典型的水体类型。在此基础上,将分类后的各类水体分别建立各自合适的反演模型进行反演。结果表明基于水体分类的经验模型反演达到满意效果,平均绝对误差为0.00217g/L,平均相对误差为3.022%。基于分类后的经验反演模型适用于鄱阳湖悬沙浓度分布的监测研究,有助于更加宏观、准确的掌握鄱阳湖泥沙浓度的空间分布和变化,为保持鄱阳湖资源的可持续开发与利用提供决策依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号