首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   64篇
  国内免费   73篇
测绘学   3篇
大气科学   19篇
地球物理   139篇
地质学   161篇
海洋学   54篇
综合类   6篇
自然地理   11篇
  2024年   5篇
  2023年   2篇
  2022年   1篇
  2021年   9篇
  2020年   15篇
  2019年   19篇
  2018年   17篇
  2017年   23篇
  2016年   13篇
  2015年   9篇
  2014年   15篇
  2013年   25篇
  2012年   11篇
  2011年   12篇
  2010年   13篇
  2009年   20篇
  2008年   16篇
  2007年   16篇
  2006年   18篇
  2005年   11篇
  2004年   16篇
  2003年   12篇
  2002年   12篇
  2001年   12篇
  2000年   12篇
  1999年   15篇
  1998年   6篇
  1997年   10篇
  1996年   3篇
  1995年   5篇
  1994年   6篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1980年   1篇
排序方式: 共有393条查询结果,搜索用时 265 毫秒
11.
Characterizing heterogeneous permeable media using flow and transport data typically requires solution of an inverse problem. Such inverse problems are intensive computationally and may involve iterative procedures requiring many forward simulations of the flow and transport problem. Previous attempts have been limited mostly to flow data such as pressure transient (interference) tests using multiple observation wells. This paper discusses an approach to generating stochastic permeability fields conditioned to geologic data in the form of a vertical variogram derived from cores and logs as well as fluid flow and transport data, such as tracer concentration history, by sequential application of simulated annealing (SA). Thus, the method incorporates elements of geostatistics within the framework of inverse modeling. For tracer-transport calculations, we have used a semianalytic transit-time algorithm which is fast, accurate, and free of numerical dispersion. For steady velocity fields, we introduce a transit-time function which demonstrates the relative importance of data from different sources. The approach is illustrated by application to a set of spatial permeability measurements and tracer data from an experiment in the Antolini Sandstone, an eolian outcrop from northern Arizona. The results clearly reveal the importance of tracer data in reproducing the correlated features (channels) of the permeability field and the scale effects of heterogeneity.  相似文献   
12.
The existence of a suspected geological fault has been confirmed using Solid State Nuclear Track Detectors (SSNTDs) by measuring radon concentration variations in the upper soil above its inferred position. The results obtained prompted us to increase the natural radon signal in the soil, using an additional radon source; this enhancement technique, has been experimentally checked with SSNTD detectors.On leave from Faculté des Sciences, Laboratoire des D.S.T.N. Université de Dakar, Dakar-Fann, Sénégal  相似文献   
13.
黄土坡面侵蚀产沙时空演变的REE示踪技术研究   总被引:2,自引:0,他引:2       下载免费PDF全文
室内交叉布设不同的稀土氧化物,通过人工模拟次降雨,在同一试验条件下,对坡面侵蚀沿顺坡方向和深度方向的演变过程同时展开研究。结果表明:REE示踪技术对定量研究土壤侵蚀具有较高的精度;降雨前期,片蚀与细沟侵蚀发育程度基本相当;后期细沟侵蚀占据坡面侵蚀的主导地位,其侵蚀平均加速度和平均侵蚀率分别是片蚀的15倍、9倍;试验结束,细沟侵蚀占据坡面总侵蚀的90%;本试验条件下,坡面下1/3区域为侵蚀活跃带。  相似文献   
14.
地热回灌的发展现状   总被引:15,自引:0,他引:15  
地热回灌是一种避免地热废水直接排放引起的热污染和化学污染的措施,并对维持热储压力,保证地热田的开采技术条件具有重要的作用。目前回灌已经成为世界范围内数十个重要的地热田生产运行中的一项日常工作,在美国、新西兰、冰岛、意大利、法国、日本、罗马尼亚、丹麦、菲律宾和萨尔瓦多等十多个国家得到了广泛的应用。在国内,北京、天津的地热回灌也已经有了良好的开端。回灌是地热田管理中最为复杂的一项技术,为了避免因回灌而引起热储冷却,需要进行回灌试验和示踪试验,并在回灌过程进行全面的监测工作。  相似文献   
15.
在干旱-半干旱地区由于入渗水分大部分滞留在包气带中,强烈地蒸发、蒸作用导致包气带中土壤水的氯离子浓度改变。氯离子示踪方法从质量守恒角度,通过比较土壤水分的氯离子浓度和降水输入的氯离子浓度大小,可以定量确定降水入渗量和降水入渗补给的历史变化过程。本文介绍了目前国外应用较普遍的氯离子均衡法和氯离子累积法,并讨论了方法应用时存在的一些问题。  相似文献   
16.
The artificial tracer sulphur hexafluoride (SF6) has been used to study the density-driven deep water exchange between two sill-separated basins of Lake Lucerne, Gersauersee and Urnersee. The sources of the density gradients between the two basins are (1) salinity differences between the major inlets due to the different geology of their drainage areas, and (2) temperature differences due to spatial variation of wind forcing. Wind speeds are generally larger in Urnersee, especially in spring during the so-called Föhn events, when winds blow from the south. In contrast, Gersauersee is protected form these winds. In spring 1989, a total of 630 g of SF6 was released at 80 to 120 m depth in the small Treib Basin located between Urnersee and Gersauersee. During about 100 days the distribution of SF6 in the lake was determined by gaschromatography. Two models are used to quantify the exchange flow, (1) a one-box mass balance model for SF6 in the deep part of Treib Basin, and (2) a one-dimensional diffusion/advection model describing the temporal and vertical temperature variation in Urnersee. According to the first model, the flow into the deep hypolimnion of Urnersee, decreases from 21·106 m3·d?1 at the end of March to about 8·106 m3·d?1 in late April. The second model yields similar flow rates. The decrease of the flow rate during spring, confirmed by both approaches, is consistent (1) with the decreasing strength of the density gradient above the sill during spring and early summer, and (2) with hydrographic information collected in Lake Lucerne during other years.  相似文献   
17.
Assessing catchment runoff response remains a key research frontier because of limitations in current observational techniques to fully characterize water source areas and transit times in diverse geographical environments. Here, we report a study that combines empirical data with modelling to identify dominant runoff processes in a sparsely monitored humid tropical catchment. The analysis integrated isotope tracers into conceptual rainfall–runoff models of varying complexity (from 5 to 11 calibrated parameters) that are able to simulate discharge and tracer concentrations and track the evolving age of stream water exiting the catchment. The model structures can be seen as competing hypotheses of catchment functioning and were simultaneously calibrated against uncertain streamflow gaugings and a 2‐year daily isotope rainfall–runoff record. Comparison of the models was facilitated using global parameter sensitivity analysis and the resulting effect on calibration. We show that a variety of tested model structures reproduced water and tracer dynamics in stream, but the simpler models failed to adequately reproduce both. The resulting water age distributions of the tested models varied significantly with little similarity between the stream water age and stored water age distributions. The sensitivity analysis revealed that only some of the more complex models (from eight parameters) could be better constrained to infer more plausible water age distributions and catchment storage estimates. These models indicated that the age of water stored in the catchment is generally older compared with the age of water fluxes, with evapotranspiration age being younger compared with streamflow. However, the water age distributions followed a similar temporal behaviour dominated by climatic seasonality. Stream water ages increased during the dry season (greater than 1 year) and decreased with increased streamflow (a few weeks old) during the wet season. We further show that the ratios of the streamwater age to stored water age distribution and the water age distribution of actual evapotranspiration to the stored water age distribution from constrained models could potentially serve as useful hydrological indicators of catchment functioning. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
18.
Diffusive mass exchange into immobile water regions within heterogeneous porous aquifers influences the fate of solutes. The percentage of immobile water is often unidentified in natural aquifers though. Hence, the mathematical prediction of solute transport in such heterogeneous aquifers remains challenging. The objective of this study was to find a simple analytical model approach that allows quantifying properties of mobile and immobile water regions and the portion of immobile water in a porous system. Therefore, the Single Fissure Dispersion Model (SFDM), which takes into account diffusive mass exchange between mobile and immobile water zones, was applied to model transport in well‐defined saturated dual‐porosity column experiments. Direct and indirect model validation was performed by running experiments at different flow velocities and using conservative tracer with different molecular diffusion coefficients. In another column setup, immobile water regions were randomly distributed to test the model applicability and to determine the portion of immobile water. In all setups, the tracer concentration curves showed differences in normalized maximum peak concentration, tailing and mass recovery according to their diffusion coefficients. These findings were more pronounced at lower flow rates (larger flow times) indicating the dependency of diffusive mass exchange into immobile water regions on tracers' molecular diffusion coefficients. The SFDM simulated all data with high model efficiency. Successful model validation supported the physical meaning of fitted model parameters. This study showed that the SFDM, developed for fissured aquifers, is applicable in porous media and can be used to determine porosity and volume of regions with immobile water. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
19.
A new method was developed for analysing and delineating streambed water fluxes, flow conditions and hydraulic properties using coiled fibre‐optic distributed temperature sensing or closely spaced discrete temperature sensors. This method allows for a thorough treatment of the spatial information embedded in temperature data by creating a matrix visualization of all possible sensor pairs. Application of the method to a 5‐day field dataset reveals the complexity of shallow streambed thermal regimes. To understand how velocity estimates are affected by violations of assumptions of one‐dimensional, saturated, homogeneous flow and to aid in the interpretation of field observations, the method was also applied to temperature data generated by numerical models of common field conditions: horizontal layering, presence of lateral flow and variable streambed saturation. The results show that each condition creates a distinct signature visible in the triangular matrices. The matrices are used to perform a comparison of the behaviour of one‐dimensional analytical heat‐tracing models. The results show that the amplitude ratio‐based method of velocity calculation leads to the most reliable estimates. The minimum sensor spacing required to obtain reliable velocity estimates with discrete sensors is also investigated using field data. The developed method will aid future heat‐tracing studies by providing a technique for visualizing and comparing results from fibre‐optic distributed temperature sensing installations and testing the robustness of analytical heat‐tracing models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
20.
In several empirical and modelling studies on river hydraulics, dispersion was negatively correlated to surface roughness. In this study, it was aimed to investigate the influence of surface roughness on longitudinal dispersion under controlled conditions. In artificial flow channels with a length of 104 m, tracer experiments with variations in channel bed material were performed. By use of measured tracer breakthrough curves, average flow velocity, mean longitudinal dispersion, and mean longitudinal dispersivity were calculated. Longitudinal dispersion coefficients ranged from 0·018 m2 s?1 in channels with smooth bed surface up to 0·209 m2 s?1 in channels with coarse gravel as bed material. Longitudinal dispersion was linearly related to mean flow velocity. Accordingly, longitudinal dispersivities ranged between 0·152 ± 0·017 m in channels with smooth bed surface and 0·584 ± 0·015 m in identical channels with a coarse gravel substrate. Grain size and surface roughness of the channel bed were found to correlate positively to longitudinal dispersion. This finding contradicts several existing relations between surface roughness and dispersion. Future studies should include further variation in surface roughness to derive a better‐founded empirical equation forecasting longitudinal dispersion from surface roughness. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号