首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11050篇
  免费   1097篇
  国内免费   1946篇
测绘学   631篇
大气科学   331篇
地球物理   967篇
地质学   4923篇
海洋学   1018篇
天文学   5101篇
综合类   520篇
自然地理   602篇
  2024年   29篇
  2023年   84篇
  2022年   235篇
  2021年   260篇
  2020年   283篇
  2019年   351篇
  2018年   273篇
  2017年   268篇
  2016年   314篇
  2015年   370篇
  2014年   579篇
  2013年   623篇
  2012年   644篇
  2011年   769篇
  2010年   806篇
  2009年   1076篇
  2008年   1004篇
  2007年   908篇
  2006年   855篇
  2005年   745篇
  2004年   641篇
  2003年   519篇
  2002年   424篇
  2001年   366篇
  2000年   323篇
  1999年   309篇
  1998年   216篇
  1997年   100篇
  1996年   106篇
  1995年   81篇
  1994年   75篇
  1993年   101篇
  1992年   35篇
  1991年   45篇
  1990年   43篇
  1989年   38篇
  1988年   32篇
  1987年   17篇
  1986年   21篇
  1985年   27篇
  1984年   19篇
  1983年   15篇
  1982年   17篇
  1981年   6篇
  1980年   13篇
  1979年   2篇
  1978年   5篇
  1977年   15篇
  1877年   1篇
  1875年   1篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
991.
长江河口盐水入侵对大通枯季径流量变化的响应时间   总被引:4,自引:3,他引:1  
应用河口海岸三维数值模式, 计算区域包括大通至长江河口及其邻近海域, 设计高分辨率网格, 数值模拟和分析不同潮型下长江河口盐水入侵对大通径流量变化的响应时间。计算结果表明, 不同潮型期间大通径流量的增加, 河口盐度响应的时间在4.0~6.2 d之间, 但小潮期的响应时间明显长于其他潮型期的响应时间。本文给出了长江河口盐水入侵对大通枯季径流量变化的响应时间, 可为河口水文、泥沙和环境等研究中取何时径流量提供了依据。  相似文献   
992.
采用放射性免疫(RIA)和组织学切片技术,系统地研究了虹鳟(Oncorhynchus mykiss)选育群体的血清性类固醇激素周年变化与性腺发育特点的关系,以及血清中性类固醇激素雌二醇(E2)和睾酮(T)在雌雄亲本中的周年变化规律和生理作用。结果表明,虹鳟性腺发育可划分为6期。雌鱼血清中E2在10月(V期性腺)达到峰值,T浓度在11月达到峰值,而进入繁殖期后(11—12月)E2开始下降。雄鱼血清T浓度在11月达到最大值,E2在6月份达到峰值,在11月之后T开始下降。在各月份,雌鱼E2浓度水平远高于雄鱼,而雄鱼T浓度个别月份低于雌鱼。这些研究揭示出,测定血清性类固醇激素浓度水平可用于准确判断鱼类的生殖状态,且可为虹鳟家系选育出早熟亲本群体提供重要技术依据。  相似文献   
993.
Studies of operational pollution carried out by European commission - Joint Research Centre in the Mediterranean Sea for the years 1999-2004 are briefly introduced. The specific analysis of the Adriatic Sea for the same period demonstrates that this area has been characterized by a relevant number of illegal discharges from ships. After setting the historical background of the project AESOP (aerial and satellite surveillance of operational pollution in the Adriatic Sea), the content, partners and aim of the project are presented. Finally, the results of the first phase of the AESOP project are presented. The results seem very encouraging. For the first time in the Adriatic, real time detection of oil spills in satellite images and an immediate verification by the Coast Guard has been undertaken. An exploratory activity has also been carried out in collaboration with the University of Ljubljana to use automatic information system (AIS) to identify the ships detected in the satellite images.  相似文献   
994.
Bulk metal analyses of surficial sediments collected around the Norwegian Crown cruise ship grounding site in Bermuda indicated significant but localized contamination of reef sediments by copper and zinc, caused by the stripping of the tri-butyltin (TBT)-free antifouling (AF) paint (Intersmooth 460) from the underside of the hull. Highest copper and zinc values were found in heavily compacted and red-pigmented sediments inside the impact scar and were comparable to levels found close to slip ways of local boat yards where AF paints from hull stripping and cleaning processes are washed into the sea. The re-distribution of AF contaminated sediments by storms and deposition on nearby reefs constitutes a significant ecological risk that could delay recovery processes and reduce the effectiveness of remediation efforts. Whilst the ecotoxicological effects of AF paint particles interspersed with sediment is unknown, and in need of further study, it is argued that the significance of AF paint contamination of grounding sites has been overlooked.  相似文献   
995.
A number of martian outflow channels were carved by discharges from large dilational fault zones. These channels were sourced by groundwater, not surface water, and when observed on high-standing plateaus they provide indicators of elevated paleo-groundwater levels. We identify three outflow channels of Hesperian age that issued from a 750-km-long fault zone extending from Candor Chasma to Ganges Chasma. Two of these channels, Allegheny Vallis and Walla Walla Vallis, have sources >2500 m above the topographic datum, too high to be explained by discharge from a global aquifer that was recharged solely in the south polar region. The indicated groundwater levels likely required regional sources of recharge at low latitudes. The floodwaters that erupted from Ophir Cavus to form Allegheny Vallis encountered two ridges that restricted the flow, forming temporary lakes. The flow probably breached or overtopped these obstructions quickly, catastrophically draining the lakes and carving several scablands. After the last obstacle had been breached, a single main channel formed that captured all subsequent flow. We performed hydrologic analyses of this intermediate phase of the flooding, prior to incision of the channel to its present depth. Using floodwater depths of 30-60 m, we calculated flow velocities of 6-15 m s−1 and discharges in the range of . Locally higher flow velocities and discharges likely occurred when the transient lakes were drained. Variable erosion at the channel and scabland crossing of MOLA pass 10644 suggests that the upper 25-30 m may consist of poorly consolidated surface materials underlain by more cohesive bedrock. We infer that an ice-covered lake with a surface elevation >2500 m probably existed in eastern Candor Chasma because this canyon is intersected by the Ophir Catenae fault system from which Allegheny Vallis and Walla Walla Vallis originated. We introduce a new hydrology concept for Mars in which the groundwater system was augmented by recharge from canyon lakes that were formed when water was released by catastrophic melting of former ice sheets in Tharsis by effusions of flood basalts. This model could help to reconcile the expected presence of a thick cryosphere during the Hesperian with the abundant evidence for groundwater as a source for some of the circum-Chryse outflow channels.  相似文献   
996.
From 378 Hubble Space Telescope WFPC2 images obtained between 1996-2004, we have measured the detailed nature of azimuthal brightness variations in Saturn's rings. The extensive geometric coverage, high spatial resolution (), and photometric precision of the UBVRI images have enabled us to determine the dependence of the asymmetry amplitude and longitude of minimum brightness on orbital radius, ring elevation, wavelength, solar phase angle, and solar longitude. We explore a suite of dynamical models of self-gravity wakes for two particle size distributions: a single size and a power law distribution spanning a decade in particle radius. From these N-body simulations, we calculate the resultant wake-driven brightness asymmetry for any given illumination and viewing geometry. The models reproduce many of the observed properties of the asymmetry, including the shape and location of the brightness minimum and the trends with ring elevation and solar longitude. They also account for the “tilt effect” in the A and B rings: the change in mean ring brightness with effective ring opening angle, |Beff|. The predicted asymmetry depends sensitively on dynamical ring particle properties such as the coefficient of restitution and internal mass density, and relatively weakly on photometric parameters such as albedo and scattering phase function. The asymmetry is strongest in the A ring, reaching a maximum amplitude A∼25% near a=128,000 km. Here, the observations are well-matched by an internal particle density near 450 kg m−3 and a narrow particle size distribution. The B ring shows significant asymmetry (∼5%) in regions of relatively low optical depth (τ∼0.7). In the middle and outer B ring, where τ?1, the asymmetry is much weaker (∼1%), and in the C ring, A<0.5%. The asymmetry diminishes near opposition and at shorter wavelengths, where the albedo of the ring particles is lower and multiple-scattering effects are diminished. The asymmetry amplitude varies strongly with ring elevation angle, reaching a peak near |Beff|=10° in the A ring and at |Beff|=15-20° in the B ring. These trends provide an estimate of the thickness of the self-gravity wakes responsible for the asymmetry. Local radial variations in the amplitude of the asymmetry within both the A and B rings are probably caused by regional differences in the particle size distribution.  相似文献   
997.
We apply an automated cloud feature tracking algorithm to estimate eddy momentum fluxes in Saturn's southern hemisphere from Cassini Imaging Science Subsystem near-infrared continuum image sequences. Voyager Saturn manually tracked images had suggested no conversion of eddy to mean flow kinetic energy, but this was based on a small sample of <1000 wind vectors. The automated procedure we use for the Cassini data produces an order of magnitude more usable wind vectors with relatively unbiased sampling. Automated tracking is successful in and around the westward jet latitudes on Saturn but not in the vicinity of most eastward jets, where the linearity and non-discrete nature of cloud features produces ambiguous results. For the regions we are able to track, we find peak eddy fluxes and a clear positive correlation between eddy momentum fluxes and meridional shear of the mean zonal wind, implying that eddies supply momentum to eastward jets and remove momentum from westward jets at a rate . The behavior we observe is similar to that seen on Jupiter, though with smaller eddy-mean kinetic energy conversion rates per unit mass of atmosphere (). We also use the appearance and rapid evolution of small bright features at continuum wavelengths, in combination with evidence from weak methane band images where possible, to diagnose the occurrence of moist convective storms on Saturn. Areal expansion rates imply updraft speeds of over the convective anvil cloud area. As on Jupiter, convection preferentially occurs in cyclonic shear regions on Saturn, but unlike Jupiter, convection is also observed in eastward jet regions. With one possible exception, the large eddy fluxes seen in the cyclonic shear latitudes do not seem to be associated with convective events.  相似文献   
998.
In November 2005, we observed the moons of Mars using the Arecibo 2380-MHz (13-cm) radar, obtaining a result for the OC radar albedo of Phobos (0.056±0.014) consistent with its previously reported radar albedo and implying an upper bound on its near-surface bulk density of . We detected Deimos by radar for the first time, finding its OC radar albedo to be 0.021±0.006, implying an upper bound on its near-surface density of , consistent with a high-porosity regolith. We briefly discuss reasons for these low radar albedos, Deimos' being possibly the lowest of any Solar System body yet observed by radar.  相似文献   
999.
Oxygen and carbon isotope ratios in the martian CO2 are key values to study evolution of volatiles on Mars. The major problems in spectroscopic determinations of these ratios on Mars are uncertainties associated with: (1) equivalent widths of the observed absorption lines, (2) line strengths in spectroscopic databases, and (3) thermal structure of the martian atmosphere during the observation. We have made special efforts to reduce all these uncertainties. We observed Mars using the Fourier Transform Spectrometer at the Canada–France–Hawaii Telescope. While the oxygen and carbon isotope ratios on Mars were byproducts in the previous observations, our observation was specifically aimed at these isotope ratios. We covered a range of 6022 to 6308 cm−1 with the highest resolving power of ν/δν=3.5×105 and a signal-to-noise ratio of 180 in the middle of the spectrum. The chosen spectral range involves 475 lines of the main isotope, 184 lines of 13CO2, 181 lines of CO18O, and 119 lines of CO17O. (Lines with strengths exceeding 10−27 cm at 218 K are considered here.) Due to the high spectral resolution, most of the lines are not blended. Uncertainties of retrieved isotope abundances are in inverse proportion to resolving power, signal-to-noise ratio, and square root of the number of lines. Laboratory studies of the CO2 isotope spectra in the range of our observation achieved an accuracy of 1% in the line strengths. Detailed observations of temperature profiles using MGS/TES and data on temperature variations with local time from two GCMs are used to simulate each absorption line at various heights in each part of the instrument field of view and then sum up the results. Thermal radiation of Mars' surface and atmosphere is negligible in the chosen spectral range, and this reduces errors associated with uncertainties in the thermal structure on Mars. Using a combination of all these factors, the highest accuracy has been achieved in measuring the CO2 isotope ratios: 13C/12C = 0.978 ± 0.020 and 18O/16O = 1.018 ± 0.018 times the terrestrial standards. Heavy isotopes in the atmosphere are enriched by nonthermal escape and sputtering, and depleted by fractionation with solid-phase reservoirs. The retrieved ratios show that isotope fractionation between CO2 and oxygen and carbon reservoirs in the solid phase is almost balanced by nonthermal escape and sputtering of O and C from Mars.  相似文献   
1000.
We investigate the dynamical evolution of trans-neptunian objects (TNOs) in typical scattered disk orbits (scattered TNOs) by performing simulations using several thousand particles lying initially on Neptune-encountering orbits. We explore the role of resonance sticking in the scattered disk, a phenomenon characterized by multiple temporary resonance captures (‘resonances’ refers to external mean motion resonances with Neptune, which can be described in the form r:s, where the arguments r and s are integers). First, all scattered TNOs evolve through intermittent temporary resonance capture events and gravitational scattering by Neptune. Each scattered TNO experiences tens to hundreds of resonance captures over a period of 4 Gyr, which represents about 38% of the object's lifetime (mean value). Second, resonance sticking plays an important role at semimajor axes , where the great majority of such captures occurred. It is noteworthy that the stickiest (i.e., dominant) resonances in the scattered disk are located within this distance range and are those possessing the lowest argument s. This was evinced by r:1, r:2 and r:3 resonances, which played the greatest role during resonance sticking evolution, often leading to captures in several of their neighboring resonances. Finally, the timescales and likelihood of temporary resonance captures are roughly proportional to resonance strength. The dominance of low s resonances is also related to the latter. In sum, resonance sticking has an important impact on the evolution of scattered TNOs, contributing significantly to the longevity of these objects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号