首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1060篇
  免费   150篇
  国内免费   657篇
测绘学   11篇
大气科学   14篇
地球物理   267篇
地质学   1389篇
海洋学   61篇
综合类   18篇
自然地理   107篇
  2024年   1篇
  2023年   15篇
  2022年   28篇
  2021年   18篇
  2020年   54篇
  2019年   60篇
  2018年   57篇
  2017年   41篇
  2016年   70篇
  2015年   72篇
  2014年   60篇
  2013年   147篇
  2012年   75篇
  2011年   97篇
  2010年   89篇
  2009年   118篇
  2008年   107篇
  2007年   96篇
  2006年   110篇
  2005年   86篇
  2004年   101篇
  2003年   64篇
  2002年   49篇
  2001年   46篇
  2000年   28篇
  1999年   28篇
  1998年   22篇
  1997年   20篇
  1996年   22篇
  1995年   17篇
  1994年   12篇
  1993年   12篇
  1992年   3篇
  1991年   7篇
  1990年   3篇
  1989年   1篇
  1988年   6篇
  1987年   6篇
  1986年   4篇
  1985年   2篇
  1984年   4篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1974年   1篇
排序方式: 共有1867条查询结果,搜索用时 206 毫秒
81.
控制边坡在冻融循环中的劣化作用,可保障季节冻土区域膨胀土边坡长期稳定。为确定土工格栅对膨胀土边坡在冻融循环过程中的稳定效果与工程意义,本文开展了膨胀土边坡模型试验,对比冻融过程中边坡内土压力、含水率、位移、温度变化。结果表明:土工格栅可约束膨胀土冻融裂缝,使裂缝发育更为均匀一致,同时减小边坡位移;加筋材料能抑制边坡水分迁移与热传导并减小土压力变化;对膨胀土边坡加筋处理可显著降低含水率波动幅值,从而减小膨胀土受含水率变化引发的胀缩劣化;不同于普通黏土,膨胀土边坡冻融循环中呈现冻缩融胀特点,而边坡加筋可有效提升冻土区膨胀土边坡的冻融稳定性,具有工程应用价值。  相似文献   
82.
为分析寒区渠基黏土热参数的随机分布特征及概率分布模型,以寒区渠基黏土的导热系数为样本,结合经典分布拟合法、多项式逼近法、最大熵法和正态信息扩散法,分别对寒区渠基黏土热参数的概率分布规律进行了研究。首先通过分析热参数的离散性,并比较概率分布曲线、拟合检验值和累计概率分布值,对不同方法描述热参数随机性的优劣进行了评价;然后,基于寒区渠基黏土热学参数对温度的敏感性,提出了一个可以达到理想拟合精度的寒区渠基黏土热参数概率推断的区间取值标准。研究结果表明:寒区渠基黏土的热参数具有随机变量的特征;正态信息扩散法可以描述热参数样本的随机波动性;在4种方法中,正态信息扩散法的拟合精度最高。使用3.5σ法,将[μ-3.5σ,μ+3.5σ](μ为随机变量的均值,σ为标准差)作为概率函数推断时的取值区间,同时考虑偏度的影响,可使得累计概率值达到1.000 0的精度,能够较准确地推断热参数的概率分布函数。  相似文献   
83.
关键元素与生命健康:中国耕地缺硒吗?   总被引:1,自引:0,他引:1  
地球上的生命和非生命都是由自然界已发现的92种化学元素组成的,通过全国土壤地球化学基准值与人体血液元素含量对比研究,发现血液中40~50种化学元素平均值与土壤地球化学基准值的分布高度一致,表明这些关键元素与生命息息相关。近年大家持续关注的硒(Se)元素是人体必需的微量元素,缺乏会产生健康风险,但摄入过量也会导致中毒,因此被称为健康窗口元素。过去研究认为,中国耕地缺硒是造成健康危害的原因之一。本文通过对全国3 382个网格化点位土壤采样,获得Se的地球化学基准值和空间分布数据,发现中国贫硒国土面积,按照世界卫生组织推荐值(0.1 mg/kg)和中国规范(0.125 mg/kg)计算,分别占21.1%和31.6%;适宜区(0.125~0.40 mg/kg)面积大约555万km2,占国土面积约57.1%;富硒区(>0.40 mg/kg)面积达110万km2,占国土面积约11.2%。贫硒国土主要分布在青藏高原和内蒙古局部地区,而中国9大平原的粮食主产区耕地总体上不缺硒,其中珠江三角洲平原、广西平原、成都平原、长江中下游平原是富硒区(>0.40 mg/kg),华北平原、东北平原、三江平原、关中平原是硒边缘区-适量区(0.125~0.40 mg/kg),只有河套平原是缺硒区(<0.125 mg/kg)。根据覆盖全国的网格化土壤采样分析结果,发现低硒带呈不连续的片状分布于内蒙古东部至青藏高原一带,与传统认为“低硒带分布于东北三省至西南云贵高原”不完全一致。硒的空间分布模式主要受地质背景、岩石类型、土壤类型和自然地理景观控制。  相似文献   
84.
85.
An adaptive substepping explicit integration scheme is developed for a porosity‐dependent hydro‐mechanical model for unsaturated soils. The model is referred to as the modified σ –Θ model in this paper, which features the employment of the subloading surface plasticity and the stress–saturation approach. On numerical aspects, convex/nonconvex subloading surfaces in the σ –Θ space may result in incorrect loading–unloading decisions during the integration. A new loading–unloading decision method is developed here to solve the problem and then embedded into the explicit integration scheme for the modified σ –Θ model. In addition, to enhance the accuracy of the explicit integration, local errors from both hydraulic and mechanical components are included in the error control for each substep. A drift correction method is also developed to ensure the state point lies on the subloading surface in the σ –Θ space within a set error level. The performance of the loading–unloading decision method for the modified σ –Θ model is discussed through comparing it with the conventional loading–unloading decision method. The importance of involving the hydraulic component in the error control is also demonstrated. The accuracy and efficiency of the proposed adaptive substepping explicit integration scheme for the modified p–Θ model are also studied via several numerical examples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
86.
This paper integrates random field simulation of soil spatial variability with numerical modeling of coupled flow and deformation to investigate consolidation in spatially random unsaturated soil. The spatial variability of soil properties is simulated using the covariance matrix decomposition method. The random soil properties are imported into an interactive multiphysics software COMSOL to solve the governing partial differential equations. The effects of the spatial variability of Young's modulus and saturated permeability together with unsaturated hydraulic parameters on the dissipation of excess pore water pressure and settlement are investigated using an example of consolidation in a saturated‐unsaturated soil column because of loading. It is found that the surface settlement and the pore water pressure profile during the process of consolidation are significantly affected by the spatially varying Young's modulus. The mean value of the settlement of the spatially random soil is more than 100% greater than that of the deterministic case, and the surface settlement is subject to large uncertainty, which implies that consolidation settlement is difficult to predict accurately based on the conventional deterministic approach. The uncertainty of the settlement increases with the scale of fluctuation because of the averaging effect of spatial variability. The effects of spatial variability of saturated permeability ksat and air entry parameters are much less significant than that of elastic modulus. The spatial variability of air entry value parameters affects the uncertainties of settlement and excess pore pressure mostly in the unsaturated zone. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
87.
The method of smoothed particle hydrodynamics (SPH) has recently been applied to computational geomechanics and has been shown to be a powerful alternative to the standard numerical method, that is, the finite element method, for handling large deformation and post‐failure of geomaterials. However, very few studies apply the SPH method to model saturated or submerged soil problems. Our recent studies of this matter revealed that significant errors may be made if the gradient of the pore‐water pressure is handled using the standard SPH formulation. To overcome this problem and to enhance the SPH applications to computational geomechanics, this article proposes a general SPH formulation, which can be applied straightforwardly to dry and saturated soils. For simplicity, the current work assumes hydrostatic pore‐water pressure. It is shown that the proposed formulation can remove the numerical error mentioned earlier. Moreover, this formulation automatically satisfies the dynamic boundary conditions at a submerged ground surface, thereby saving computational cost. Discussions on the applications of the standard and new SPH formulations are also given through some numerical tests. Furthermore, techniques to obtain the correct SPH solution are also proposed and discussed throughout. As an application of the proposed method, the effect of the dilatancy angle on the failure mechanism of a two‐sided embankment subjected to a high groundwater table is presented and compared with that of other solutions. Finally, the proposed formulation can be considered a basic formulation for further developments of SPH for saturated soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
88.
The primary focus in this work is on proposing a methodology for the assessment of stability of natural/engineered slopes in clayey soils subjected to water infiltration. In natural deposits of fine‐grained soils, the presence of water in the vicinity of minerals results in an interparticle bonding. This effect cannot be easily quantified as it involves complex chemical interactions at the micromechanical level. Here, the evolution of strength properties, including the apparent cohesion resulting from initial suction at the irreducible fluid saturation, is described by employing the framework of chemoplasticity. The paper provides first the formulation of the problem; this involves specification of the constitutive relation, development of an implicit return mapping scheme, and the outline of a coupled transient formulation. The framework is then applied to examine the stability of a slope subjected to a prolonged period of intensive rainfall. It is shown that the water infiltration may trigger the loss of stability resulting from the degradation of material properties. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
89.
In organic soils, hydraulic conductivity is related to the degree of decomposition and soil compression, which reduce the effective pore diameter and consequently restrict water flow. This study investigates how the size distribution and geometry of air‐filled pores control the unsaturated hydraulic conductivity of peat soils using high‐resolution (45 µm) three‐dimensional (3D) X‐ray computed tomography (CT) and digital image processing of four peat sub‐samples from varying depths under a constant soil water pressure head. Pore structure and configuration in peat were found to be irregular, with volume and cross‐sectional area showing fractal behaviour that suggests pores having smaller values of the fractal dimension in deeper, more decomposed peat, have higher tortuosity and lower connectivity, which influences hydraulic conductivity. The image analysis showed that the large reduction of unsaturated hydraulic conductivity with depth is essentially controlled by air‐filled pore hydraulic radius, tortuosity, air‐filled pore density and the fractal dimension due to degree of decomposition and compression of the organic matter. The comparisons between unsaturated hydraulic conductivity computed from the air‐filled pore size and geometric distribution showed satisfactory agreement with direct measurements using the permeameter method. This understanding is important in characterizing peat properties and its heterogeneity for monitoring the progress of complex flow processes at the field scale in peatlands. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
90.
One‐dimensional consolidation analysis of layered soils conventionally entails solving a system of differential equations subject to the flow conditions at the bounding upper and lower surfaces, as well as the continuity conditions at the interface of every pair of contiguous layers. Formidable computational efforts are required to solve the ensuing transcendental equations expressing the matching conditions at the interfaces, using this method. In this paper, the jump discontinuities in the flow parameters upon crossing from one layer to the other have been systematically built into a single partial differential equation governing the space–time variation of the excess pore pressure in the entire composite medium, by the use of the Heaviside distribution. Despite the presence of the discontinuities in the coefficients of the differential equation, a closed‐form solution in the sense of an infinite generalized Fourier series is obtained, in addition to which is the development of a Green's function for the differential problem. The eigenfunctions of the composite medium are the coordinate functions of the series, obtained computationally through the application of the extended equations of Galerkin. The analysis has been illustrated by solving the consolidation problem of a four‐layer composite, and the results obtained agree very well with the results obtained by previous researchers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号