首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   987篇
  免费   146篇
  国内免费   504篇
测绘学   10篇
大气科学   14篇
地球物理   263篇
地质学   1174篇
海洋学   56篇
综合类   15篇
自然地理   105篇
  2024年   1篇
  2023年   12篇
  2022年   24篇
  2021年   17篇
  2020年   47篇
  2019年   49篇
  2018年   53篇
  2017年   39篇
  2016年   59篇
  2015年   67篇
  2014年   43篇
  2013年   132篇
  2012年   64篇
  2011年   84篇
  2010年   75篇
  2009年   99篇
  2008年   96篇
  2007年   80篇
  2006年   93篇
  2005年   70篇
  2004年   92篇
  2003年   57篇
  2002年   45篇
  2001年   43篇
  2000年   26篇
  1999年   26篇
  1998年   22篇
  1997年   18篇
  1996年   21篇
  1995年   16篇
  1994年   11篇
  1993年   11篇
  1992年   3篇
  1991年   7篇
  1990年   3篇
  1989年   1篇
  1988年   6篇
  1987年   6篇
  1986年   4篇
  1985年   2篇
  1984年   4篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1974年   1篇
排序方式: 共有1637条查询结果,搜索用时 15 毫秒
81.
82.
石梁宏  李双洋  尹楠 《冰川冻土》2021,43(1):195-203
多年冻土是含有冰的特殊土体,在自然环境变化及工程扰动下易发生冻胀融沉变形,严重威胁着青藏高原工程建筑物的安全稳定,特别对青藏铁路的畅通运营提出了严峻挑战.以青藏铁路五道梁地区路基断面为研究对象,采用颗粒离散单元法,通过建立热-力离散元计算模型,对路基的温度场和变形进行了计算和预测.结果表明:离散单元法克服了有限元方法无...  相似文献   
83.
基于热探针法原理,测试了在杭州湾以东陆架区取得的28个海底表层柱状样0.2、1.0和1.8 m处的导热系数,结合激光粒度分析结果,比较了研究区6种土导热系数的大小,发现含砂量大于10%的粗粒土拥有较大的导热系数。土质类型相同时,含水量和干密度对其导热系数影响显著。杭州湾沉积区、混合沉积区,陆架砂质沉积区表层土导热系数的平均值分别是:1.25、1.45 和1.46 W·m-1·K-1,呈现出由近岸向外海增大的趋势。而土样导热系数在垂向的变化表明:水深、埋深等空间分布因素对海洋土的热物性没有直接影响。  相似文献   
84.
大量文献资料分析表明,平原地区地下水脆弱性主控因素为地下水位埋深、包气带土层及其特征,而包气带粘性土层的截污性能及其厚度则又是脆弱性主要的影响因子。试验研究结果显示,粘性土的截污容量大小可以通过模拟淋滤实验测试得出,有效阻隔足额厚度也可计算得出。根据不同粘性土层的截污容量、有效阻隔厚度等,可以评判土层的污染防护能力,并可据此评价平原区地下水的脆弱性。  相似文献   
85.
86.
An adaptive substepping explicit integration scheme is developed for a porosity‐dependent hydro‐mechanical model for unsaturated soils. The model is referred to as the modified σ –Θ model in this paper, which features the employment of the subloading surface plasticity and the stress–saturation approach. On numerical aspects, convex/nonconvex subloading surfaces in the σ –Θ space may result in incorrect loading–unloading decisions during the integration. A new loading–unloading decision method is developed here to solve the problem and then embedded into the explicit integration scheme for the modified σ –Θ model. In addition, to enhance the accuracy of the explicit integration, local errors from both hydraulic and mechanical components are included in the error control for each substep. A drift correction method is also developed to ensure the state point lies on the subloading surface in the σ –Θ space within a set error level. The performance of the loading–unloading decision method for the modified σ –Θ model is discussed through comparing it with the conventional loading–unloading decision method. The importance of involving the hydraulic component in the error control is also demonstrated. The accuracy and efficiency of the proposed adaptive substepping explicit integration scheme for the modified p–Θ model are also studied via several numerical examples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
87.
This paper integrates random field simulation of soil spatial variability with numerical modeling of coupled flow and deformation to investigate consolidation in spatially random unsaturated soil. The spatial variability of soil properties is simulated using the covariance matrix decomposition method. The random soil properties are imported into an interactive multiphysics software COMSOL to solve the governing partial differential equations. The effects of the spatial variability of Young's modulus and saturated permeability together with unsaturated hydraulic parameters on the dissipation of excess pore water pressure and settlement are investigated using an example of consolidation in a saturated‐unsaturated soil column because of loading. It is found that the surface settlement and the pore water pressure profile during the process of consolidation are significantly affected by the spatially varying Young's modulus. The mean value of the settlement of the spatially random soil is more than 100% greater than that of the deterministic case, and the surface settlement is subject to large uncertainty, which implies that consolidation settlement is difficult to predict accurately based on the conventional deterministic approach. The uncertainty of the settlement increases with the scale of fluctuation because of the averaging effect of spatial variability. The effects of spatial variability of saturated permeability ksat and air entry parameters are much less significant than that of elastic modulus. The spatial variability of air entry value parameters affects the uncertainties of settlement and excess pore pressure mostly in the unsaturated zone. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
88.
The method of smoothed particle hydrodynamics (SPH) has recently been applied to computational geomechanics and has been shown to be a powerful alternative to the standard numerical method, that is, the finite element method, for handling large deformation and post‐failure of geomaterials. However, very few studies apply the SPH method to model saturated or submerged soil problems. Our recent studies of this matter revealed that significant errors may be made if the gradient of the pore‐water pressure is handled using the standard SPH formulation. To overcome this problem and to enhance the SPH applications to computational geomechanics, this article proposes a general SPH formulation, which can be applied straightforwardly to dry and saturated soils. For simplicity, the current work assumes hydrostatic pore‐water pressure. It is shown that the proposed formulation can remove the numerical error mentioned earlier. Moreover, this formulation automatically satisfies the dynamic boundary conditions at a submerged ground surface, thereby saving computational cost. Discussions on the applications of the standard and new SPH formulations are also given through some numerical tests. Furthermore, techniques to obtain the correct SPH solution are also proposed and discussed throughout. As an application of the proposed method, the effect of the dilatancy angle on the failure mechanism of a two‐sided embankment subjected to a high groundwater table is presented and compared with that of other solutions. Finally, the proposed formulation can be considered a basic formulation for further developments of SPH for saturated soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
89.
The primary focus in this work is on proposing a methodology for the assessment of stability of natural/engineered slopes in clayey soils subjected to water infiltration. In natural deposits of fine‐grained soils, the presence of water in the vicinity of minerals results in an interparticle bonding. This effect cannot be easily quantified as it involves complex chemical interactions at the micromechanical level. Here, the evolution of strength properties, including the apparent cohesion resulting from initial suction at the irreducible fluid saturation, is described by employing the framework of chemoplasticity. The paper provides first the formulation of the problem; this involves specification of the constitutive relation, development of an implicit return mapping scheme, and the outline of a coupled transient formulation. The framework is then applied to examine the stability of a slope subjected to a prolonged period of intensive rainfall. It is shown that the water infiltration may trigger the loss of stability resulting from the degradation of material properties. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
90.
In organic soils, hydraulic conductivity is related to the degree of decomposition and soil compression, which reduce the effective pore diameter and consequently restrict water flow. This study investigates how the size distribution and geometry of air‐filled pores control the unsaturated hydraulic conductivity of peat soils using high‐resolution (45 µm) three‐dimensional (3D) X‐ray computed tomography (CT) and digital image processing of four peat sub‐samples from varying depths under a constant soil water pressure head. Pore structure and configuration in peat were found to be irregular, with volume and cross‐sectional area showing fractal behaviour that suggests pores having smaller values of the fractal dimension in deeper, more decomposed peat, have higher tortuosity and lower connectivity, which influences hydraulic conductivity. The image analysis showed that the large reduction of unsaturated hydraulic conductivity with depth is essentially controlled by air‐filled pore hydraulic radius, tortuosity, air‐filled pore density and the fractal dimension due to degree of decomposition and compression of the organic matter. The comparisons between unsaturated hydraulic conductivity computed from the air‐filled pore size and geometric distribution showed satisfactory agreement with direct measurements using the permeameter method. This understanding is important in characterizing peat properties and its heterogeneity for monitoring the progress of complex flow processes at the field scale in peatlands. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号