首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7044篇
  免费   2497篇
  国内免费   711篇
测绘学   73篇
大气科学   224篇
地球物理   4104篇
地质学   3796篇
海洋学   659篇
天文学   347篇
综合类   153篇
自然地理   896篇
  2024年   5篇
  2023年   19篇
  2022年   59篇
  2021年   142篇
  2020年   154篇
  2019年   379篇
  2018年   522篇
  2017年   551篇
  2016年   602篇
  2015年   568篇
  2014年   598篇
  2013年   915篇
  2012年   588篇
  2011年   575篇
  2010年   487篇
  2009年   397篇
  2008年   500篇
  2007年   386篇
  2006年   383篇
  2005年   375篇
  2004年   353篇
  2003年   306篇
  2002年   258篇
  2001年   227篇
  2000年   244篇
  1999年   108篇
  1998年   71篇
  1997年   76篇
  1996年   61篇
  1995年   57篇
  1994年   75篇
  1993年   59篇
  1992年   26篇
  1991年   30篇
  1990年   25篇
  1989年   17篇
  1988年   17篇
  1987年   17篇
  1986年   8篇
  1985年   9篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
41.
This paper is a continuation of previous research, which obtained a convenient solution for arbitrary surface fluxes before ponding. By means of Fourier Transformation this has been extended to derive analytical solutions of a linearized Richards' equation for arbitrary input fluxes after surface saturation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
42.
The oxygen isotope records of both benthic and planktonic Foraminifera in five piston cores, collected from the region between the Oyashio and Kuroshio Currents near Japan, clearly show the marked latitudinal shifts of these two currents during the past 25 kyr. Under the present hydrographic condition, a clear relationship between the sea‐surface temperature (SST) and oxygen isotope differences from benthic to planktonic Foraminifera is observed in this region. Using this relationship, we find decreased SSTs of 12–13°C (maximum 15°C) in the southernmost core site at the Last Glacial Maximum (LGM), indicating the Oyashio Current shifted southward. The SSTs at the southern two core sites abruptly increased more than 10°C at 10–11 ka, suggesting the Kuroshio Current shifted northward over these sites at 10–11 ka. In contrast, the northern two core sites have remained under the influence of the cold Oyashio Current for the past 25 kyr. With the reasonable estimate of bottom‐water temperature decrease of 2.5°C at the LGM, the SSTs estimated by this new method give exactly the same SST values calculated from Mg/Ca ratio of planktonic Foraminifera, allowing palaeosea‐surface salinities to be reconstructed. The result suggests that the ice volume effect was 1.0 ± 0.1‰ at the LGM. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
43.
Stable oxygen isotope analysis and measurement of several dissolved cations and anions of bulk meltwater samples have provided information about the hydrochemical environment of the glacial hydrological system at Imersuaq Glacier, an outlet tongue from the Greenland ice‐sheet, West Greenland. The samples were collected at frequent intervals during the period 20–28 July 2000 in a small (<20 L s?1) englacial meltwater outlet at the glacier margin. The results document the following findings: (i) a marked diurnal variation of δ18O is related to the composition of oxygen isotope provenances, mainly near‐marginal local superimposed ice and basal up‐sheared ice further up‐glacier; (ii) a relationship is seen between all base cations (Na+, K+, Ca2+, Mg2+), SO42? and δ18O, indicating that solute acquisition is provided by solid–solution contact with the up‐sheared ice—as the relationship with Cl? is weak the influence of seasalt‐derived solutes is small in the area; (iii) when the melt rate is high, two diurnal maxima of δ18O values and solute concentrations are measured, and it is suggested that a snow meltwater component is responsible for the second maximum of δ18O—a short residence time leads to a delayed decrease in ion concentrations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
44.
Accurate chronologies are essential for linking palaeoclimate archives. Carbon‐14 wiggle‐match dating was used to produce an accurate chronology for part of an early Holocene peat sequence from the Borchert (The Netherlands). Following the Younger Dryas–Preboreal transition, two climatic shifts could be inferred. Around 11 400 cal. yr BP the expansion of birch (Betula) forest was interrupted by a dry continental phase with dominantly open grassland vegetation, coeval with the PBO (Preboreal Oscillation), as observed in the GRIP ice core. At 11 250 cal. yr BP a sudden shift to a humid climate occurred. This second change appears to be contemporaneous with: (i) a sharp increase of atmospheric 14C; (ii) a temporary decline of atmospheric CO2; and (iii) an increase in the GRIP 10Be flux. The close correspondence with excursions of cosmogenic nuclides points to a decline in solar activity, which may have forced the changes in climate and vegetation at around 11 250 cal. yr BP. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
45.
The influence of emergent and submerged macrophytes on flow velocity and turbulence production is demonstrated in a 140 m reach of the River Blackwater in Farnborough, Hampshire, UK. Macrophyte growth occurs in patches and is dominated by Sparganium erectum and Sparganium emersum. In May 2001, patches of S. erectum were already established and occupied 18% of the channel area. The flow adjusted to these (predominantly lateral) patches by being channelled through a narrower cross‐section. The measured velocity profiles showed a logarithmic form, with deviations attributable to topographic control. The channel bed was the main source of turbulence. In September 2001, in‐stream macrophytes occupied 27% of the channel, and overhanging bank vegetation affected 32% of the area. Overall flow resistance, described by Manning's n, showed a threefold increase that could be attributed to the growth of S. emersum in the middle of the channel. Velocity profiles showed different characteristic forms depending on their position relative to plant stems and leaves. The overall velocity field had a three‐dimensional structure. Turbulence intensities were generally higher and turbulence profiles tended to mirror the velocity profiles. Evidence for the generation of coherent eddies was provided by ratios of the root mean square velocities. Spectral analysis identified deviations from the Kolmogorov ?5/3 power law and provided statistical evidence for a spectral short‐cut, indicative of additional turbulence production. This was most marked for the submerged vegetation and, in some instances, the overhanging bank vegetation. The long strap‐like leaves of S. emersum being aligned approximately parallel to the flow and the highly variable velocity field created by the patch arrangement of macrophytes suggest that the dominant mechanism for turbulence production is vortex shedding along shear zones. Wake production around individual stems of S. emersum close to the bed may also be important locally. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
46.
The Rayleigh wave phase and group velocities in the period range of 24–39 sec, obtained from two earthquakes which occurred in northeastern brazil and which were recorded by the Brazilian seismological station RDJ (Rio de Janeiro), have been used to study crustal and upper mantle structures of the Brazilian coastal region. Three crustal and upper mantle models have been tried out to explain crustal and upper mantle structures of the region. The upper crust has not been resolved, due basically to the narrow period range of the phase and group velocities data. The phase velocity inversions have exhibited good resolutions for both lower crust and upper mantle, with shear wave velocities characteristic of these regions. The group velocity data inversions for these models have showed good results only for the lower crust. The shear wave velocities of the lower crust (3.86 and 3.89 km/sec), obtained with phase velocity inversions, are similar to that (=3.89 km/sec) found byHwang (1985) to the eastern South American region, while group velocity inversions have presented shear velocity (=3.75 km/sec) similar to that (=3.78 km/sec) found byLazcano (1972) to the Brazilian shield. It was not possible to define sharply the crust-mantle transition, but an analysis of the phase and group velocity inversions results has indicated that the total thickness of the crust should be between 30 and 39 km. The crustal and upper mantle model, obtained with phase velocity inversion, can be used as a preliminary model for the Brazilian coast.  相似文献   
47.
MARC J.P. GOUW 《Sedimentology》2008,55(5):1487-1516
Ancient fluvial successions often act as hydrocarbon reservoirs. Sub‐surface data on the alluvial architecture of fluvial successions are often incomplete and modelling is performed to reconstruct the stratigraphy. However, all alluvial architecture models suffer from the scarcity of field data to test and calibrate them. The purposes of this study were to quantify the alluvial architecture of the Holocene Rhine–Meuse delta (the Netherlands) and to determine spatio‐temporal trends in the architecture. Five north–south orientated cross‐sections, perpendicular to the general flow direction, were compiled for the fluvial‐dominated part of the delta. These sections were used to calculate the width/thickness ratios of fluvial sandbodies (SBW/SBT) and the proportions of channel‐belt deposits (CDP), clastic overbank deposits (ODP) and organic material (OP) in the succession. Furthermore, the connectedness ratio (CR) between channel belts was calculated for each cross‐section. Distinct spatial and temporal trends in the alluvial architecture were found. SBW/SBT ratios decrease by a factor of ca 4 in a downstream direction. CDP decreases from ca 0·7 (upstream) to ca 0·3 (downstream). OP increases from less than 0·05 in the upstream part of the delta to more than 0·25 in the downstream delta. ODP is approximately constant (0·4). CR is ca 0·25 upstream, which is approximately two times larger than in the downstream part of the delta. Furthermore, CDP in the downstream Rhine–Meuse delta increases after 3000 cal yr BP. These trends are attributed to variations in available accommodation space, floodplain geometry and channel‐belt size. For instance, channel belts tend to narrow in a downstream direction, which reduces SBW/SBT, CDP and CR. Tectonics cause local deviations in the general architectural trends. In addition, the positive correlation between avulsion frequency and the ratio of local to regional aggradation rate probably influenced alluvial architecture in the Rhine–Meuse delta. The Rhine–Meuse data set can be a great resource when developing more sophisticated models for alluvial architecture simulation, which eventually could lead to better characterizations of hydrocarbon reservoirs. To aid such usage of the Rhine–Meuse data set, constraints for relevant parameters are provided at the end of the paper.  相似文献   
48.
The Lower Permian Wasp Head Formation (early to middle Sakmarian) is a ~95 m thick unit that was deposited during the transition to a non‐glacial period following the late Asselian to early Sakmarian glacial event in eastern Australia. This shallow marine, sandstone‐dominated unit can be subdivided into six facies associations. (i) The marine sediment gravity flow facies association consists of breccias and conglomerates deposited in upper shoreface water depths. (ii) Upper shoreface deposits consist of cross‐stratified, conglomeratic sandstones with an impoverished expression of the Skolithos Ichnofacies. (iii) Middle shoreface deposits consist of hummocky cross‐stratified sandstones with a trace fossil assemblage that represents the Skolithos Ichnofacies. (iv) Lower shoreface deposits are similar to middle shoreface deposits, but contain more pervasive bioturbation and a distal expression of the Skolithos Ichnofacies to a proximal expression of the Cruziana Ichnofacies. (v) Delta‐influenced, lower shoreface‐offshore transition deposits are distinguished by sparsely bioturbated carbonaceous mudstone drapes within a variety of shoreface and offshore deposits. Trace fossil assemblages represent distal expressions of the Skolithos Ichnofacies to stressed, proximal expressions of the Cruziana Ichnofacies. Impoverished trace fossil assemblages record variable and episodic environmental stresses possibly caused by fluctuations in sedimentation rates, substrate consistencies, salinity, oxygen levels, turbidity and other physio‐chemical stresses characteristic of deltaic conditions. (vi) The offshore transition‐offshore facies association consists of mudstone and admixed sandstone and mudstone with pervasive bioturbation and an archetypal to distal expression of the Cruziana Ichnofacies. The lowermost ~50 m of the formation consists of a single deepening upward cycle formed as the basin transitioned from glacioisostatic rebound following the Asselian to early Sakmarian glacial to a regime dominated by regional extensional subsidence without significant glacial influence. The upper ~45 m of the formation can be subdivided into three shallowing upward cycles (parasequences) that formed in the aftermath of rapid, possibly glacioeustatic, rises in relative sea‐level or due to autocyclic progradation patterns. The shift to a parasequence‐dominated architecture and progressive decrease in ice‐rafted debris upwards through the succession records the release from glacioisostatic rebound and amelioration of climate that accompanied the transition to broadly non‐glacial conditions.  相似文献   
49.
Evolution of sedimentary systems at large temporal and spatial scales cannot be scaled down to laboratory dimensions by conventional hydraulic Froude scaling. Therefore, many researchers question the validity of experiments aiming to simulate this evolution. Yet, it has been shown that laboratory experiments yield stratigraphic responses to allocyclic forcing that are remarkably similar to those in real‐world prototypes, hinting at scale independency with strong dependence on boundary conditions but weak dependence on the actual sediment transport dynamics. This paper addresses the dilemma by contrasting sediment transport rules that apply in the laboratory with those that apply in real‐world geological systems. It is demonstrated that the generation of two‐dimensional stratigraphy in a flume can be simulated numerically by the non‐linear diffusion equation. Sediment transport theory is used to demonstrate that only suspension‐dominated meandering rivers should be simulated with linear diffusion. With increasing grain‐size (coarse sand to gravel) and shallowness of river systems, the prediction of long‐term transport must be simulated by non‐linear, slope‐dependent diffusion to allow for increasing transport rates and thus change in stratigraphic style. To point out these differences in stratigraphic style, three stages in infill of accommodation have been defined here: (i) a start‐up stage, when the system is prograding to base level (e.g. the shelf edge) with no sediment flux beyond the base‐level point; (ii) a fill‐up stage, when the system is further aggrading while progressively more sediment is bypassing base level with the progression of the infill; and (iii) a keep‐up stage, when more than 90% of the input is bypassing the base level and less than 10% is used for filling the accommodation. By plotting the rate of change in flux for various degrees of non‐linearity (varying the exponent in the diffusion equation) it was found that the error between model and real‐world prototype is largest for the suspension‐dominated prototypes, although never more than 30% and only at the beginning of the fill‐up stage. The error reduces to only 10% for the non‐linear sandy‐gravelly and gravelly systems. These results are very encouraging and open up ways to calibrate numerical models of sedimentary system evolution by such experiments.  相似文献   
50.
Sediments contained in the river bed do not necessarily contribute to morphological change. The finest part of the sediment mixture often fills the pores between the larger grains and can be removed without causing a drop in bed level. The discrimination between pore‐filling load and bed‐structure load, therefore, is of practical importance for morphological predictions. In this study, a new method is proposed to estimate the cut‐off grain size that forms the boundary between pore‐filling load and bed‐structure load. The method evaluates the pore structure of the river bed geometrically. Only detailed grain‐size distributions of the river bed are required as input to the method. A preliminary validation shows that the calculated porosity and cut‐off size values agree well with experimental data. Application of the new cut‐off size method to the river Rhine demonstrates that the estimated cut‐off size decreases in a downstream direction from about 2 to 0·05 mm, covariant with the downstream fining of bed sediments. Grain size fractions that are pore‐filling load in the upstream part of the river thus gradually become bed‐structure load in the downstream part. The estimated (mass) percentage of pore‐filling load in the river bed ranges from 0% in areas with a unimodal river bed, to about 22% in reaches with a bimodal sand‐gravel bed. The estimated bed porosity varies between 0·15 and 0·35, which is considerably less than the often‐used standard value of 0·40. The predicted cut‐off size between pore‐filling load and bed‐structure load (Dc,p) is fundamentally different from the cut‐off size between wash‐load and bed‐material load (Dc,w), irrespective of the method used to determine Dc,p or Dc,w. Dc,w values are in the order of 10?1 mm and mainly dependent on the flow characteristics, whereas Dc,p values are generally much larger (about 100 mm in gravel‐bed rivers) and dependent on the bed composition. Knowledge of Dc,w is important for the prediction of the total sediment transport in a river (including suspended fines that do not interact with the bed), whereas knowledge of Dc,p helps to improve morphological predictions, especially if spatial variations in Dc,p are taken into account. An alternative to using a spatially variable value of Dc,p in morphological models is to use a spatially variable bed porosity, which can also be predicted with the new method. In addition to the morphological benefits, the new method also has sedimentological applications. The possibility to determine quickly whether a sediment mixture is clast‐supported or matrix‐supported may help to better understand downstream fining trends, sediment entrainment thresholds and variations in hydraulic conductivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号