首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8876篇
  免费   2444篇
  国内免费   1999篇
测绘学   194篇
大气科学   1360篇
地球物理   4519篇
地质学   2582篇
海洋学   3320篇
天文学   146篇
综合类   542篇
自然地理   656篇
  2024年   32篇
  2023年   108篇
  2022年   228篇
  2021年   314篇
  2020年   335篇
  2019年   505篇
  2018年   387篇
  2017年   367篇
  2016年   382篇
  2015年   464篇
  2014年   493篇
  2013年   509篇
  2012年   549篇
  2011年   563篇
  2010年   454篇
  2009年   610篇
  2008年   566篇
  2007年   730篇
  2006年   629篇
  2005年   543篇
  2004年   568篇
  2003年   484篇
  2002年   429篇
  2001年   333篇
  2000年   340篇
  1999年   327篇
  1998年   315篇
  1997年   272篇
  1996年   273篇
  1995年   237篇
  1994年   219篇
  1993年   183篇
  1992年   139篇
  1991年   121篇
  1990年   76篇
  1989年   55篇
  1988年   49篇
  1987年   36篇
  1986年   21篇
  1985年   13篇
  1984年   5篇
  1983年   8篇
  1982年   5篇
  1981年   2篇
  1980年   8篇
  1979年   5篇
  1978年   9篇
  1977年   5篇
  1954年   14篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
221.
To estimate the deep structure of the southern part of the Nojima Fault, southwest Japan without the influence of near-surface structures, we analyzed the Love-wave-type fault-zone trapped waves (LTWs) recorded by a borehole seismometer at 1800 m depth. We examined the polarization, dispersion, and dominant frequency of the wavetrain following the direct S-wave in each seismogram to identify the LTW. We selected eight candidates for typical LTWs from 462 records. Because the duration of the LTW increases with hypocentral distance, we infer that the low velocity fault-zone of the Nojima Fault continues towards the seismogenic depth. In addition, since the duration of the LTW increases nonlinearly with hypocentral distance, we infer that the S-wave velocity of the fault-zone increases with depth. The location of events showing the LTW indicates that the fault-zone dips to the southeast at 75° and continues to a depth of approximately 10 km. We assumed a uniform low-velocity waveguide to estimate the average structure of the fault-zone. We estimated the average width, S-wave velocity, and Qs of the fault-zone by comparing an analytical solution of the LTW with measured data. The average width, S-wave velocity, and Qs of the fault-zone are 150 to 290 m, 2.5 to 3.2 km/s, and 40 to 90, respectively. Hence the fault-zone structure with a larger width and smaller velocity reduction than the fault-zone model estimated by previous surface observation is more suitable to represent the average fault-zone structure of the Nojima fault. The present study also indicated that the shallow layers and/or a shallow fault-zone structure drastically changes the characteristics of the LTW recorded at the surface, and therefore cause a discrepancy in the fault-zone model between the borehole observation and surface observation.  相似文献   
222.
A robust and reliable sensor to measure gas (air) superficial velocity (Jg) continuously in flotation systems is introduced. It is based on the sampling of bubbles by buoyancy with the accumulating air allowed to exit through an orifice. At steady state, pressure drop is measured and related to the Jg by prior calibration. The continuous device is readily automated and extended to a multi-unit set-up. The sensor and data collections are described. The governing gas flow equation and models of the dynamic response to air flow rate set point change and fluctuations in froth depth are derived. Model predictions are confirmed against plant data. By taking a moving average, the Jg remains valid in the face of typical plant disturbances.  相似文献   
223.
Ice and snow have often helped physicists understand the world. On the contrary it has taken them a very long time to understand the flow of the glaciers. Naturalists only began to take an interest in glaciers at the beginning of the 19th century during the last phase of glacier advances. When the glacier flow from the upslope direction became obvious, it was then necessary to understand how it flowed. It was only in 1840, the year of the Antarctica ice sheet discovery by Dumont d'Urville, that two books laid the basis for the future field of glaciology: one by Agassiz on the ice age and glaciers, the other one by canon Rendu on glacier theory. During the 19th century, ice flow theories, adopted by most of the leading scientists, were based on melting/refreezing processes. Even though the word ‘fluid’ was first used in 1773 to describe ice, more the 130 years would have to go by before the laws of fluid mechanics were applied to ice. Even now, the parameter of Glen's law, which is used by glaciologists to model ice deformation, can take a very wide range of values, so that no unique ice flow law has yet been defined. To cite this article: F. Rémy, L. Testut, C. R. Geoscience 338 (2006).  相似文献   
224.
周晔  张国榉 《探矿工程》2006,33(9):46-48
以ANSYS为平台,按照真实工作状态对凿岩钎杆进行了瞬态动力学分析,并对不同活塞形状下分析结果数据进行了比较,为冲击凿岩系统设计提供了理论依据。  相似文献   
225.
A sequential waveform method is developed to simulate the seismic response of basin-edge structure excited by a plane incident P-wave. The full procedure involves: (a) a previous parameterization of the investigated model using the seismic wave velocities and depths of the sedimentary stratifications; (b) an input motion determined from the records at stations installed on hard rock; (c) forward computation of the P-SV elastic wave field by means of a two-dimensional finite difference (FD) method; (d) the optimization of the model vector using simulated annealing technique and comparing the simulated seismic response of the tested structure with the observed wave field; (e) the correction of the initial model by trial-and-error by testing the differences between synthetics and observed data, and (f) the final solution obtained by iteration using the conjugate gradient algorithm. The search of an optimal basin-edge model has been parallel processed by varying the shapes and velocities of strata on the basis of the fitting of relative timing, amplitude and phase between the output and the observed data. The input motion and sensitivity have been checked and the validity of the method has been demonstrated by numeric analysis. Using the teleseismic records generated by 7 earthquakes recorded at 26 broadband seismic stations, we have studied the seismic velocity structure of the southern edge of the Jiyang depression located in the Bohai Bay basin, northern China. Two cross sections show an agreement between the velocity results and the geological sections available in the region. In addition, we obtain evidence of three hidden faults under the sections and features that suggest major extensions at the Paleogene.  相似文献   
226.
Substantial damage to water supply systems, including water delivery pipelines, water treatment plants, reservoirs, and water storage tanks, was reported after the 1999 Chi–Chi Taiwan Earthquake. This paper first summarizes the damage survey and then presents the results of seismic fragility analysis for underground pipelines. Construction blueprints of the water delivery pipelines and repair work orders of 11 townships and cities in the disastrous area were digitized into a Geographical Information System (GIS) for analysis and assessment. With the aid of the GIS system, we found that PVC pipes made up 86% of water delivery pipelines while steel, cast iron, ductile iron, PE and others took the rest. Therefore, this paper focuses on the fragility analysis of PVC pipes. Three different methods were applied to derive the fragility relations between the PVC water pipes having nominal diameters (approximately inner diameters) greater than or equal to 65 mm and earthquake intensity parameters such as peak ground acceleration and peak ground velocity. The results were then examined with those of other countries. The discrepancy between our results and the empirical equation used by HAZUS, an earthquake loss estimation software developed by the Federal Emergency Management Agency was not significant.  相似文献   
227.
Threshold velocity for wind erosion: the effects of porous fences   总被引:3,自引:0,他引:3  
Porous fence is a kind of artificial windbreak that has many practical applications. The threshold wind velocities at different distances downwind from porous fences were measured and the corresponding characteristics of particle movement observed to assess their shelter effect. It is found that the fence’s porosity is the key factor that determines the resulting shelter effect. The area near a fence can be typically classified into five regions, each with a different mode of particle movement. Dense fences, and especially solid fences, favor the accumulation of sand upwind of the fences. Fences with porosities of 0.3–0.4 produce the maximum threshold wind velocity; those with porosities of 0.3–0.6 (depending on the fence height) provide the maximum effective shelter distance. It is confirmed that the fence porosities of 0.3–0.4 that have been proposed for practical application in previous research are the most effective for abating wind erosion.  相似文献   
228.
229.
230.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号