首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1492篇
  免费   230篇
  国内免费   501篇
测绘学   94篇
大气科学   95篇
地球物理   287篇
地质学   102篇
海洋学   1301篇
天文学   1篇
综合类   141篇
自然地理   202篇
  2024年   18篇
  2023年   60篇
  2022年   74篇
  2021年   70篇
  2020年   64篇
  2019年   77篇
  2018年   64篇
  2017年   53篇
  2016年   74篇
  2015年   73篇
  2014年   96篇
  2013年   90篇
  2012年   138篇
  2011年   114篇
  2010年   103篇
  2009年   96篇
  2008年   97篇
  2007年   88篇
  2006年   95篇
  2005年   79篇
  2004年   71篇
  2003年   53篇
  2002年   76篇
  2001年   55篇
  2000年   50篇
  1999年   43篇
  1998年   30篇
  1997年   27篇
  1996年   36篇
  1995年   21篇
  1994年   27篇
  1993年   39篇
  1992年   22篇
  1991年   17篇
  1990年   8篇
  1989年   12篇
  1988年   3篇
  1986年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
排序方式: 共有2223条查询结果,搜索用时 593 毫秒
111.
CO2加富对塔玛亚历山大藻叶绿素荧光参数及产毒的影响   总被引:2,自引:2,他引:0  
由大气中CO_2浓度升高引起的海洋酸化,是全球性的重大环境问题之一。本研究采用实验生态学的方法,以塔玛亚历山大藻(Alexandrium tamarense)为研究对象,分析其在CO_2加富条件下叶绿素荧光动力学参数及产毒特征的变化。调制叶绿素荧光结果显示,CO_2加富对塔玛亚历山大藻的PSⅡ最大光化学量子产量(Fv/Fm)、最大相对电子传递效率(r ETRmax)有显著影响(P0.05),且随着培养时间的增长Fv/Fm、r ETRmax均降低,对半饱和光强(Ik)、快速光曲线初始斜率(α)却无显著影响(P0.05)。结果说明CO_2加富能促进塔玛亚历山大藻的PSⅡ最大光化学量子产量,提高其最大光能转换效率和相对最大电子传递效率。高效液相色谱法分析结果显示,该株塔玛亚历山大藻主要产漆沟藻毒素1(GTX1)、漆沟藻毒素4(GTX4)、N-磺酰氨甲酰基毒素(C1)及N-磺酰氨甲酰基毒素(C2)四种PSTs毒素,CO_2加富不改变主要麻痹性贝毒(PSTs)的种类组成,但能显著提高氨基甲酸酯类毒素(GTX1、GTX4)产量(P0.05),而降低N-磺酰氨甲酰基类毒素(C1、C2)产量(P0.05),说明加富能使塔玛亚历山大藻所产毒素发生转化,进而影响藻细胞的整体毒性。  相似文献   
112.
本文基于Aqua/MODIS、Terra/MODIS和Envisat/MERIS多源卫星叶绿素a浓度产品,研究了客观分析融合方法,制作了西北太平洋海域(0°~50°N,100°~150°E)叶绿素a浓度融合产品,并从有效数据空间覆盖率和产品精度两个方面对融合方法进行了评价。与单传感器以及欧洲太空局发布的GSM模型业务化融合产品相比,客观分析融合产品空间覆盖率明显提高;与收集的2002-2012年间叶绿素a浓度实测数据比较,GSM模型业务化融合产品的匹配数据点为578个,偏差为-0.20 mg/m3,均方根误差为0.37 mg/m3,客观分析法融合产品的匹配数据点为1432个,偏差为-0.21 mg/m3,均方根误差为0.36 mg/m3。结果表明:本文研究的客观分析融合方法在保证融合产品精度的同时可显著提高产品的空间覆盖率,在海洋水色融合应用前景广阔。  相似文献   
113.
通过1999年和2010年夏季同期7月在白令海(169°E~166°W,50°N~67°N)获取的94份浮游植物样品分析,获得了近十年的始末两个时间节点的浮游植物群落结构与时空变化,探讨了浮游植物群落动态及其与环境因素的关联。研究结果显示,共鉴定浮游植物(>10μm)5门58属153种,分为3个生态类群。硅藻是浮游植物的主体,种类多丰度高,占总种类数目的66.7%,占总丰度的95.2%。鉴于样品属性和空间范围的不同,物种组成有细微差别,丰度有较大差异且空间分布明显不同,高丰度区受控于上层营养盐供给和表层环流系统。优势种从北方温带大洋性硅藻演变为广温广盐性与冷水性硅藻,1999年以西氏新细齿状藻为第一优势种,柔弱伪菱形藻次之;2010年以丹麦细柱藻为第一优势种,冷水性的诺登海链藻次之并在陆架和陆坡占优。浮游植物群落结构较为稳定,由深水群落和浅水群落组成。深水群落分布于太平洋西北部和白令海盆,种类组成以温带大洋性的西氏新细齿状藻、长海毛藻、大西洋角毛藻和广布性的菱形海线藻、扁面角毛藻、笔尖根管藻为主,丰度低,种间丰度分配均匀,优势种多元化,物种多样性高;浅水群落分布于白令海陆坡和陆架,主要由冷水性的诺登海链藻、叉尖角毛藻、聚生角毛藻和广布性的丹麦细柱藻、旋链角毛藻组成,丰度高,种间丰度分配不均匀,优势种突出,物种多样性低。白令海夏季浮游植物种类组成及丰度变化直接受控于表层环流、营养盐、春季冰缘线等环境因素。  相似文献   
114.
根据2013年4月(春季)和9月(秋季)2个航次调查数据,对台山核电邻近海域浮游植物种类组成、时空分布及多样性指数等群落特征进行了分析。共鉴定浮游植物3门61种,其中硅藻类48种,占78.69%;甲藻类11种,占18.03%;金藻类2种,占3.28%。种类组成以暖水种和广温种为主。浮游植物丰度均值春季(11.78×107个/m3)与秋季(29.37×107个/m3)无明显差异;然而丰度水平变化较大,整体表现为春秋两季核电站温排水口附近站位均低于远离站位。春秋两季浮游植物优势种共出现了7种,春季仅出现了中肋骨条藻Skeletonema costatum1种,优势度高达0.996;秋季出现了7种,包括中肋骨条藻(0.291)、柔弱拟菱形藻Pseudo-nitzschia delicatissima(0.222)、拟弯角毛藻Chaetoceros pseudocurvisetus(0.214)和并基角毛藻Chaetoceros decipiens(0.056)等。海域春季Shannon-Wiener多样性指数H′、Pielou均匀度指数J′和Margalef物种丰富度指数D均值分别为0.55、0.18和0.50;秋季分别为2.80、0.62和0.80。多样性指数显示台山核电附近海域水质状态受到了一定程度的污染。  相似文献   
115.
在实验室控制条件下,研究了无机磷磷酸二氢钠(NaH_2PO_4)及3种有机磷源三磷酸腺苷二钠盐(adenosine disodium triphosphate,ATP)、β-甘油磷酸二钠(sodiumβ-glycerophosphate,G-P)和D-葡萄糖-6-磷酸(D-Glucose 6-phosphate,D-G-6-P)对杜氏盐藻(Dunaliella salina)生长及PSII系统的影响。结果表明,杜氏盐藻在ATP和NaH_2PO_4的磷环境中生长迅速,最大比生长速率(μ_(max))分别为(0.736±0.0158)/d和(0.667±0.0553)/d;而β-甘油磷酸二钠和D-葡萄糖-6-磷酸培养条件下盐藻生长则具有滞后效应,μ_(max)分别为(0.232±0.0114)/d和(0.31±0.0077)/d。ATP和NaH_2PO_4作为磷源时,盐藻最大电子传递效率(ETR_(max))和最大饱和光强(I_k)显著高于β-甘油磷酸二钠和D-葡萄糖-6-磷酸处理组(P0.05),而NPQ则呈相反。JIP-test参数可知,单位反应中心吸收的光能(ABS/RC)、t=0时单位反应中心捕获的用于还原QA的能量(TR_0/RC)和最大光化学效率(Φ_(P0))在各组间差异不显著(P0.05),但β-甘油磷酸二钠和D-葡萄糖-6-磷酸处理组单位反应中心耗散掉的能量(DI_0/RC)显著增加(P0.05),ψ_0和Φ_(E0)显著降低(P0.05)。表明β-甘油磷酸二钠和D-葡萄糖-6-磷酸作为磷源时盐藻光合系统反应活性中心(RC)部分关闭,反应活性中心的数量(RC/CS_0)减少,PSⅡ受体侧电子传递受到影响,能量耗散效率提高。综上可知,杜氏盐藻均能利用无机磷和有机磷作为磷源供其生长,但ATP作为磷源使得盐藻在最短时间进入对数期,生物量显著提高(P0.05)。  相似文献   
116.
于2013年3月和8月研究了长江口及其邻近海域叶绿素a的分布特征,并对环境因子和长江冲淡水对浮游植物生物量分布的影响进行了探讨。结果表明,叶绿素a浓度在丰水期较高,平均值为5.18μg/L,最高值达32.05μg/L,现场海水出现变色现象;与同期历史资料对比分析,发现该海域叶绿素a浓度呈现出波动增长趋势。丰水期与枯水期叶绿素a的相对高值区均位于冲淡水的中部,122.5°E~123°E之间;丰水期在调查海域出现溶解氧低值区与低氧区,最低值仅为0.64 mg/L;发现低氧区出现位置北移、面积扩大和溶解氧最低值下降的趋势。底层溶解氧低值区分布与表层叶绿素高值区大致吻合,表明低氧现象与表层浮游植物的生长和现存量密切相关,在跃层存在的水体中表层浮游植物的大量繁殖易造成底层低氧区的出现。  相似文献   
117.
李天深  蓝文陆 《海洋通报》2016,35(2):201-208
利用位于广西廉州湾的自动监测浮标从2010年开始监控到的水华监测数据,分析水华发生前后溶解氧、pH、叶绿素等数据变化,结合气象、浮游植物密度数据,探讨不同赤潮藻增殖过程环境因子的变化规律,为赤潮机理及预警预报研究提供科学参考。廉州湾水华的叶绿素自动监测数据高值范围为24.5~77.0μg/L,浮游植物优势种为硅藻,浮游植物密度接近赤潮爆发的阈值。自动监测浮标能捕捉并监控到水华发生全过程,其长时间高频率的观测资料可有效应用于水华及赤潮的预警预报。不同藻种水华的自动监测数据变化具有差异性,在进行水华预警时应综合考虑叶绿素、溶解氧以及pH的变化。气象因素是水华诱发的因素,降雨过后,气温突升,风速小于等于三级时,可结合自动监测网络监测数据,发布水华预警。  相似文献   
118.
2014年7月,对华侨城湿地浮游生物进行调查。共鉴定浮游植物4门17种,浮游动物3门12种。叶绿素a含量值较大,以及耐污浮游生物成为优势种群,表明华侨城湿地正受较严重污染。同时,淡水藻类成为水体优势藻种,表明华侨城湿地水体正逐步淡化。  相似文献   
119.
张武昌  陈雪  赵苑  赵丽  肖天 《海洋科学集刊》2016,51(51):181-193
微食物环是海洋生态系统中重要的物质和能量过程,是传统食物链的有效补充。微食物环研究是当前海洋生态学研究的热点之一,但对其结构的系统研究较少,海洋微食物网结构在2000年才被Garrison提出。尽管微食物网各个类群的丰度在不同海洋环境中有相对变化,但是这些变化都处于一定的范围之内,其丰度结构约为纤毛虫10 cell ml-1、鞭毛虫103 cell ml-1、微微型真核浮游生物104 cell ml-1、蓝细菌104-5 cell ml-1、异养细菌106 cell ml-1、病毒107 particle ml-1。海洋浮游食物链中捕食者和饵料生物粒径的最佳比值为10:1,实际研究中该比值会略低,例如纤毛虫与其饵料的粒径比值为8:1,鞭毛虫为3:1。Pico和Nano浮游植物的丰度比(Pico:Nano)是研究微食物网结构的指数之一,该指数具有不受研究尺度影响的优点,可用于研究区域性和全球性微食物网结构。近年来,学者们从多角度对海洋微食物网的结构开展了研究,不同海区微食物网各类群丰度、生物量的时间和空间变化研究有很多报道,微食物网的结构可受空间、季节、摄食、营养盐等多种因素影响。在对不同空间微食物网的研究中,学者往往研究不同物理性质的水团中各类群生物丰度的不同,以此来表征微食物网结构的不同;同一海区微食物网结构的季节变化也是使用各个类群丰度和生物量的变化来表示,该变化主要受水文环境因素影响。摄食者对微食物网各类生物的影响通过三种途径:1. 中型浮游动物摄食;2. 中型浮游动物摄食微型浮游动物,通过营养级级联效应影响低营养级生物;3. 中型浮游动物通过释放溶解有机物、营养盐影响细菌和低营养级生物。浮游植物通过产生化感物质和溶解有机物影响微食物网结构,而营养盐的浓度及变化则可以对微食物网产生直接或间接影响。  相似文献   
120.
北大西洋地区除了存在约70 a周期的AMO(Atlantic Multidecadal Oscillation,北大西洋年代际振荡)之外,历史长期气候记录中英格兰温度(Central England Temperature,CET)与格陵兰冰芯净雪累计率还存在显著的20 a周期波动。本研究利用CCSM4(Community Climate System Model version 4)耦合模式工业革命前控制试验(piControl)结果中的海表面温度(Sea Surface Temperature,SST),通过10~50 a带通滤波与扩展经验正交函数(Extended Empirical Orthogonal Function,EEOF)分解,得到在北大西洋副极地海区存在准20 a振荡的逆时针旋转模态。此周期与其临近地区的CET、格陵兰冰芯净雪累计率的准20 a振荡周期相吻合,说明这种北大西洋副极地海区准20 a振荡的海洋模态与其临近地区的大气准20 a振荡之间可能存在相应的联系。进一步利用CAM4(the Community Atmosphere Model version4)大气模式,以北大西洋副极地海区准20 a振荡SST旋转模态为强迫场进行敏感性试验,进一步验证了这种联系。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号