首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1736篇
  免费   10篇
  国内免费   127篇
测绘学   64篇
大气科学   98篇
地球物理   431篇
地质学   962篇
海洋学   140篇
天文学   55篇
综合类   2篇
自然地理   121篇
  2024年   15篇
  2023年   38篇
  2022年   46篇
  2021年   67篇
  2020年   163篇
  2019年   91篇
  2018年   120篇
  2017年   180篇
  2016年   112篇
  2015年   135篇
  2014年   234篇
  2013年   356篇
  2012年   221篇
  2011年   4篇
  2010年   6篇
  2009年   3篇
  2008年   2篇
  2007年   6篇
  2006年   7篇
  2005年   15篇
  2004年   14篇
  2003年   8篇
  2002年   20篇
  2001年   2篇
  2000年   2篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1990年   1篇
排序方式: 共有1873条查询结果,搜索用时 31 毫秒
91.
The precise constraints on the timing of metamorphism of the Changhai metamorphic complex is of great importance considering the prolonged controversial issue of the north margin and the extension of the Sulu–Dabie HP–UHP Belt. While the monazite U–Th–Pb and muscovite 40Ar/39Ar techniques are widely accepted as two of the most powerful dating tools for revealing the thermal histories of medium–low grade metamorphic rocks and precisely constraining the timing of metamorphism. The Changhai metamorphic complex at the SE Jiao–Liao–Ji Belt, North China Craton consists of a variety of pelitic schist and Grt–Ky-bearing paragneiss, and minor quartzite and marble. Analyses of mineral inclusions and back-scattered electric (BSE) images of monazites, combined with LA–ICP–MS U–Th–Pb ages for monazites and 40Ar/39Ar ages for muscovites, provide evidence of the origin and metamorphic age of the Changhai metamorphic complex. Monazites separates from various Grt–Mus schists and Grt–Ky–St–Mus paragneisses exhibit homogeneous BSE images from cores to rims, and contain inclusion assemblages of Grt + Mus + Qtz ± Ctd ± Ky in schist, and Grt + Ky + St + Mus + Pl + Kfs + Qtz inclusions in paragneiss. These inclusion assemblages are very similar to matrix minerals of host rocks, indicating they are metamorphic rather than inherited or detrital in origin. LA–ICP–MS U–Th–Pb dating reveals that monazites of schist and paragneiss have consistent 206Pb/238U ages ranging from 228.1 ± 3.8 to 218.2 ± 3.7 Ma. In contrast, muscovites from various schists show slightly older 40Ar/39Ar plateau ages of 236.1 ± 1.5 to 230.2 ± 1.2 Ma. These geochronological and petrological data conclude that the pelitic sediments have experienced a metamorphic event at the Mid–Late Triassic (236.1–218.2 Ma) rather than the Paleoproterozoic (1950–1850 Ma), commonly regarded as the Precambrian basement for the Jiao–Liao–Ji Belt. Hence, the Changhai metamorphic complex should be considered as a discrete lithotectonic group.This newly recognized Mid–Late Triassic metamorphic event (236.1–218.2 Ma) for the Changhai metamorphic complex is coeval with the HP–UHP metamorphic event (235–220 Ma) for Sulu–Dabie rocks. This leads us to speculate that the metamorphism of the Changhai complex belt along the SE margin of the North China Craton was genetically related to the Mid–Late Triassic collision of the North China and South China cratons. By the same token, the Sulu–Dabie HP–UHP Belt may have extended through Yantai, and the southern Yellow Sea, and to the southern side of the Changhai metamorphic complex.  相似文献   
92.
The initiation timing and mechanism of lithospheric thinning of the North China Craton (NCC) was still controversial. Late Triassic igneous rocks especially mantle derived mafic rocks would provide constrains on Early Mesozoic lithospheric mantle geodynamics and initiation of lithospheric thinning. This paper reports Late Triassic magmatic rocks, including lamprophyre, diorite dykes and biotite monzogranite cropped out in Qingchengzi district of Liaodong peninsula, northeastern NCC. LA–ICPMS zircon U–Pb dating yield ages of 210–227 Ma and 224 Ma for lamprophyres and biotite monzogranite respectively. Lamprophyre is ultrapotassic, strongly enriched in REE and LILEs, depleted in HFSEs, and negative Hf isotopes, which are discriminating signatures of crustal source, but distinguishingly high compatible element contents indicate the primary magma originated from mantle source—a fertile one. Lamprophyre derived from partial melting of an enriched lithospheric mantle, which was modified by slab-derived hydrous fluids/melts associated with deep subduction between the Yangtze Craton and the NCC. The diorite displays distinct features with relatively enriched Nb, Ta, HREE and depleted Th, U, which suggest it derived from a relatively depleted source. The depletion was caused by break-off of the Yangtze slab during deep subduction introducing asthenospheric mantle into the source. The biotite monzogranite shows adakitic affinity, and originated from partial melting of the thickened lower crust with addition of small proportion of mantle material. The recognition of Late Triassic magmatism implies extensional tectonic settings in Liaodong peninsula and suggests initiation of lithospheric thinning of North China Craton in eastern segment might begin early in Late Triassic.  相似文献   
93.
Porphyry and skarn Cu–Fe–Au–Mo deposits are widespread in the Middle and Lower Yangtze River metallogenic belt (MLYMB), eastern China. The Matou deposit has long been regarded as a typical Cu–Mo porphyry deposit within Lower Yangtze part of the belt. Recently, we identified scheelite and wolframite in quartz veins in the Matou deposit, which is uncommon in other porphyry and skarn deposits in the MLYMB. We carried out detailed zircon U–Pb dating and geochemical and Sr–Nd–Hf isotopic studies of the granodiorite porphyry at Matou to define any differences from other ore-related granitoids. The porphyry shows a SiO2 content ranging from 61.85 wt.% to 65.74 wt.%, K2O from 1.99 wt.% to 3.74 wt.%, and MgO from 1.74 wt.% to 2.19 wt.% (Mg# value ranging from 45 to 55). It is enriched in light rare earth elements and large ion lithophile elements, but relatively depleted in Nb, Ta, Y, Yb and compatible trace elements (such as Cr, Ni, and V), with slight negative Eu anomalies (Eu/Eu* = 0.88–0.98) and almost no negative Sr anomalies. Results of electron microprobe analysis of rock-forming silicate minerals indicate that the Matou porphyry has been altered by an oxidized fluid that is rich in Mg, Cl, and K. The samples show relatively low εNd(t) values from −7.4 to −7.1, slightly high initial 87Sr/86Sr values from 0.708223 to 0.709088, and low εHf(t) values of zircon from −9.0 to −6.5, when compared with the other Cu–Mo porphyry deposits in the MLYMB. Zircon U–Pb dating suggests the Matou granodiorite porphyry was emplaced at 139.5 ± 1.5 Ma (MSWD = 1.8, n = 15), which is within the age range of the other porphyries in the MLYMB. Although geochemical characteristics of the Matou and other porphyries in the MLYMB are similar and all adakitic, the detrital zircons in the samples from Matou suggest that Archean lower crust (2543 ± 29 Ma, MSWD = 0.25, n = 5) was involved with the generation of Matou magma, which is different from the other porphyries in the belt. Our study suggests that the Matou granodiorite porphyry originated from partial melting of thickened lower crust that was delaminated into the mantle, similar to the other porphyries in the MLYMB, but it has a higher proportion of lower crustal material, including Archean rocks, which contributed to the formation of the porphyry and related W-rich magmatic-hydrothermal system.  相似文献   
94.
The Jinping–Fan Si Pan (JFP) Cenozoic magmatic and Cu–Mo–Au metallogenic belt in the southeastern part of the Ailao Shan shear zone host the Tongchang, Chang′an, Habo, and Chinh Sang Cu–Mo–Au deposits. These deposits form an integrated epithermal-porphyry regional mineralization system associated with 40–32 Ma high-K alkaline magmatism. The magmatic rocks in the belt have relatively low TiO2 (<0.73 wt%), P2O5 (<0.29 wt%), and FeO* (<4.99 wt%), and high Na2O (2.86–4.75 wt%) and K2O (4.01–7.98 wt%). They also have high contents of incompatible trace elements, and are enriched in LILE (Rb, Ba, K, Sr) and LREE. They have marked Nb, Ta, Ti and P depletion in primitive mantle-normalized spidergrams, and plot close to the EMII mantle field in the Sr–Nd isotopic diagram. These characteristics are similar to those of the Eocene high-K alkaline rocks along the northern Ailao Shan belt, eastern Tibet plateau. The sulfur and lead isotope analyses of sulfide minerals from both the ores and related magmatic rocks confirm the involvement of a magmatic ore fluid. The Cenozoic alkaline intrusions and Cu–Mo–Au mineralization in the JFP were formed prior to the initiation of left-lateral shearing along the Ailao Shan shear zone. The magmas appear to have been derived from enriched mantle, possibly with mixing of materials from the buried Tethyan oceanic lithosphere, and/or crust.  相似文献   
95.
New conodont samples have been systematically collected at high stratigraphic resolution from the upper part of the Longtan Formation through to the lower part of the Yelang Formation at the Zhongzhai section, southwestern Guizhou Province, South China, in an effort to verify the first local occurrence of Hindeodus parvus in relation to the Permian–Triassic boundary at this section. The resampled conodont fauna from the Permian–Triassic boundary interval comprises five identified species and two undetermined species in Hindeodus and Clarkina. Most importantly, the first local occurrence of Hindeodus parvus is found for the first time from the bottom of Bed 28a, 18 cm lower than the previously reported first local occurrence of this species at this section. Considering the previously accepted PTB at the Zhongzhai section, well calibrated by conodont biostratigraphy, geochronology and carbon isotope chemostratigraphy, this lower (earlier) occurrence of H. parvus suggests that this critical species could occur below the Permian–Triassic boundary. As such, this paper provides evidence that (1) the first local occurrences of H. parvus are diachronous in different sections with respect to the PTB defined by the First Appearance Datum (FAD) of this species at its GSSP section in Meishan, China and that (2) the lower stratigraphic range of H. parvus should now be extended to latest Permian.  相似文献   
96.
The Cretaceous–Paleogene boundary (KPgB) was dated by the 40Ar/39Ar method herein from the western interior of North America at 65.48 ± 0.12 Ma (1σ), in good agreement with other recent published estimates. For the Deccan Traps, India, new argon ages as well as others available in the literature, are assessed for reliability based on (a) statistical reliability of plateau/isochron sections and (b) freshness of material dated utilizing the alteration index method. From tholeiitic lavas from the Composite Western Ghats Section (CWGS), only six ages are found to be reliable estimates of the time of crystallization. These ages along with the magnetic polarity of the lavas agree with the geomagnetic polarity time scale (GPTS) at ∼67–64 Ma. Alkaline rocks from the Anjar area of Kutch, provide three reliable ages that suggest a hiatus in lava extrusion around KPgB. For the Rajahmundry basalts, the upper flow’s age defines its formation during chron 29n; a single age from the lower reversed polarity flow appears somewhat dichotomous when plotted against the GPTS. The reliable lava ages indicate the most voluminous (reversed polarity) sections of the CWGS were extruded at a time statistically indistinguishable from that of the KPgB. The Deccan Trap – KPgB faunal extinction hypothesis remains plausible, but must compete with the latest report, favoring a very close temporal connection (∼0.03 m.y.) between the Chixculub (Impact) Crater and the KPgB.  相似文献   
97.
The retreat of the Tethys Sea and the uplift of the Tibetan Plateau play the critical roles in driving Asian climatic changes during the Cenozoic. In the Pamir–Tien Shan convergence zone, over 3000 m of Cenozoic successions, consisting of marine deposits in the lower, continental clay and fine sand in the middle, and molasse in the upper part, record the evolution of the Tethys Sea, the Asian aridification, and the deformation of the Pamir. In this work, the existing biostratigraphic subdivisions and new electronic spinning resonance dating results were used to assign ages to formations within the Ulugqat section. Sedimentary facies analysis and multi-proxy indices were used to reconstruct the paleo-environmental evolution. The results show: (1) the Pamir–Tien Shan convergence zone has undergone progressive environmental changes from shallow marine before ∼34 Ma to arid land at ∼23 Ma and finally to inter-mountain basin by ∼5.3 Ma; (2) the overall increase in mean size of grains, decrease in redness, in magnetic susceptibility, and in proportion of the ultrafine component of the sediments studied revealed a long-term strengthening in potential energy to transporting medium, cooling, and enhanced continental aridity, respectively; (3) the easternmost edge of the Tethys Sea prevailed in the western Tarim Basin from late Cretaceous to early Cenozoic, and finally retreated from this region around the Eocene–Oligocene transition, which in turn strengthened the Asian aridification; (4) accumulation of molasse with an upper age of ∼1 Ma suggests that the deformation front of the Pamir migrated to this area at or before that time.  相似文献   
98.
Daraban Leucogranite dykes intruded discordantly into the basal serpentinized harzburgite of the Mawat Ophiolite, Kurdistan region, NE Iraq. These coarse grained muscovite-tourmaline leucogranites are the first leucogranite dykes identified within the Mawat Ophiolite. They are mainly composed of quartz, K-feldspar, plagioclase, tourmaline, muscovite, and secondary phologopite, while zircon, xenotime, corundum, mangano-ilemnite and cassiterite occur as accessories.The A/CNK value of the granite dyke samples varies from 1.10 to 1.22 indicating a strongly peraluminous composition. CaO/Na2O ranges from 0.11 to 0.15 and Al2O3/TiO2 from 264 to 463, similar to the strongly peraluminous (SP) granites exposed in ‘high-pressure’ collision zones such as the Himalayas.Ar–Ar muscovite step-heating dating yields 37.57 ± 0.25 and 38.02 ± 0.53 Ma plateau ages for two samples which are thought to reflect either their magmatic emplacement or resetting during collision-related metamorphism. Mineral chemistry shows evidence of both primary and secondary types of muscovite, with cores favouring the magmatic interpretation and slight effects of a late syn-serpentinization fluid seen at the rims.Geochemical features of Daraban Leucogranite dykes favour a syn-collisional tectonic setting. They probably formed in response to the continental collision between Eurasia and Arabia during the initial stage of the opening of the Gulf of Aden at 37 Ma. The muscovite ages and geochemical features of Daraban Leucogranite are strong evidence for the timing of the continental collision between northeastern Arabia and Eurasia in Kurdistan region of Iraq.  相似文献   
99.
The Yinjiagou Mo–Cu–pyrite deposit of Henan Province is located in the Huaxiong block on the southern margin of the North China craton. It differs from other Mo deposits in the East Qingling area because of its large pyrite resource and complex associated elements. The deposit’s mineralization process can be divided into skarn, sulfide, and supergene episodes with five stages, marking formation of magnetite in the skarn episode, quartz–molybdenite, quartz–calcite–pyrite–chalcopyrite–bornite–sphalerite, and calcite–galena–sphalerite in the sulfide episode, and chalcedony–limonite in the supergene episode. Re–Os and 40Ar–39Ar dating indicates that both the skarn-type and porphyry-type orebodies of the Yinjiagou deposit formed approximately 143 Ma ago during the Early Cretaceous. Four types of fluid inclusions (FIs) have been distinguished in quartz phenocryst, various quartz veins, and calcite vein. Based on petrographic observations and microthermometric criteria the FIs include liquid-rich, gas-rich, H2O–CO2, and daughter mineral-bearing inclusions. The homogenization temperature of FIs in quartz phenocrysts of K-feldspar granite porphyry ranges from 341 °C to >550 °C, and the salinity is 0.4–44.0 wt% NaCl eqv. The homogenization temperature of FIs in quartz–molybdenite veins is 382–416 °C, and the salinity is 3.6–40.8 wt% NaCl eqv. The homogenization temperature of FIs in quartz–calcite–pyrite–chalcopyrite–bornite–sphalerite ranges from 318 °C to 436 °C, and the salinity is 5.6–42.4 wt% NaCl eqv. The homogenization temperature of FIs in quartz–molybdenite stockworks is in a range of 321–411 °C, and the salinity is 6.3–16.4 wt% NaCl eqv. The homogenization temperature of FIs in quartz–sericite–pyrite is in a range of 326–419 °C, and the salinity is 4.7–49.4 wt% NaCl eqv. The ore-forming fluids of the Yinjiagou deposit are mainly high-temperature, high-salinity fluids, generally with affinities to an H2O–NaCl–KCl ± CO2 system. The δ18OH2O values of ore-forming hydrothermal fluids are 4.0–8.6‰, and the δDV-SMOW values are between −64‰ and −52‰, indicating that the ore-forming fluids were primarily magmatic. The δ34SV-CDT values of sulfides range between −0.2‰ and 6.3‰ with a mean of 1.6‰, sharing similar features with deeply sourced sulfur, implying that the sulfur mainly came from the lower crust composed of poorly differentiated igneous materials, but part of the heavy sulfur came from the Guandaokou Group dolostone. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values of sulfides are in the range of 17.331–18.043, 15.444–15.575, and 37.783–38.236, respectively, which is generally consistent with the Pb isotopic signature of the Yinjiagou intrusion, suggesting that the Pb chiefly originated from the felsic–intermediate intrusive rocks in the mine area, with a small amount of lead from strata. The Yinjiagou deposit is a porphyry–skarn deposit formed during the Mesozoic transition of a tectonic regime that is EW-trending to NNE-trending, and the multiepisode boiling of ore-forming fluids was the primary mechanism for mineral deposition.  相似文献   
100.
Late Pleistocene paleoclimatic variability on the northeastern Qinghai–Tibetan Plateau (NE QTP) was reconstructed using a chronology based on AMS 14C and 230Th dating results and a stable oxygen isotopic record. These are derived from lake carbonates in a 102-m-long Qarhan sediment core (ISL1A) collected from the eastern Qaidam Basin. Previous research indicates that the δ18O values of lacustrine carbonates are mainly controlled by the isotopic composition of lake water, which in turn is a function of regional P/E balance and the proportion of precipitation that is monsoon-derived on the NE QTP. Modern isotopic observations indicate that the δ18O values of lake carbonates in hyper-arid Qaidam Basin are more positive during the warm and wet period. Due to strong evaporation and continental effect in this basin, the positive δ18O values in the arid region indicate drier climatic conditions. Based on this interpretation and the δ18O record of fine-grained lake carbonates and dating results in ISL1A, the results imply that drier climatic conditions in the Qarhan region occurred in three intervals, around 90–80 ka, 52–38 ka and 10–9 ka, which could correspond to late MIS 5, middle MIS 3 and early Holocene, respectively. These three phases were almost coincided with low lake level periods of Gahai, Toson and Qinghai Lakes (to the east of Qarhan Lake) influenced by ASM on the orbital timescales. Meanwhile, there was an episode of relatively high δ18O value during late MIS 3, suggesting that relatively dry climatic condition in this period, rather than “a uniform Qarhan mega-paleolake” spanning the ∼44 to 22 ka period. These results insight into the understanding of “the Greatest Lake Period” on the QTP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号