首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   638篇
  免费   333篇
  国内免费   95篇
测绘学   29篇
大气科学   44篇
地球物理   110篇
地质学   299篇
海洋学   103篇
天文学   10篇
综合类   79篇
自然地理   392篇
  2023年   1篇
  2022年   6篇
  2021年   17篇
  2020年   15篇
  2019年   11篇
  2018年   16篇
  2017年   19篇
  2016年   25篇
  2015年   40篇
  2014年   24篇
  2013年   54篇
  2012年   26篇
  2011年   36篇
  2010年   25篇
  2009年   49篇
  2008年   54篇
  2007年   45篇
  2006年   43篇
  2005年   40篇
  2004年   56篇
  2003年   39篇
  2002年   50篇
  2001年   25篇
  2000年   41篇
  1999年   22篇
  1998年   51篇
  1997年   49篇
  1996年   35篇
  1995年   27篇
  1994年   25篇
  1993年   17篇
  1992年   24篇
  1991年   11篇
  1990年   14篇
  1989年   6篇
  1988年   10篇
  1987年   5篇
  1986年   1篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有1066条查询结果,搜索用时 485 毫秒
41.
The whole-rock geochemistry of metamorphosed greywackes, arenites and arkoses within the Mesoproterozoic Namaqua-Natal-Maudheim Province is interpreted with the aim of establishing geochemical correlations and defining common sediment source terrains. Metasediments of the Mfongosi Group of the Natal Sector of the Namaqua-Natal Metamorphic Province were sampled from their type area in the Mfongosi Valley. Metagreywackes from the northern limits of the Mfongosi Valley, directly adjacent to the Kaapvaal Craton, show ocean island arc signatures while metagreywackes from the southern limits of the Mfongosi Valley, near the contact with the Madidima Thrust of the Natal nappe zone, show mainly active continental margin signatures. Interleaved, geochemically distinct low-Ca+Na, high-K metamorphosed arkoses to lithic arkoses indicate a minor passive margin sediment component. Geochemical classification of low-grade Ahlmannryggen Group greywackes, arenites and arkoses of the Grunehogna Province, Antarctica, indicates both active and passive continental margin sediment sources. An oceanic island arc signature is not evident in Ahlmannryggen Group data. The active continental margin signature in both Natal Sector and Grunehogna Province metasediments potentially provides for a common link between these terranes. Discriminant Function Analysis, using three pre-defined provenance sub-sets within the Mfongosi Group and two pre-defined provenance sub-sets within the Ahlmannryggen Group, indicate that metasediments with active continental margin signatures from both groups are geochemically identical, implying that the active continental margin of the Grunehogna Province shed immature sediments westwards (African azimuths) into the developing, narrow or restricted Mesoproterozoic ‘Mfongosi Basin.’ This was accompanied by minor sediment influx from a stable continental platform, potentially the Kaapvaal Craton. Oblique and diachronous collision, initiated in the southwestern portions of the combined Natal Sector/Grunehogna Province system produced a laterally variable Mfongosi Group, which formed in the ‘Mfongosi Basin’. Coarse-grained sediments dominated in its eastern portions while basalts with thin sapropelite units dominated in its western portions.  相似文献   
42.
1IntroductionIn the early 1960s, glaciers in western China were classified into maritime- and continental-types by different glacial environment and physical characteristics (Shi and Xie, 1964). With extensive glaciological investigations in the western regions (Lanzhou Institute of Glaciology and Geocryology of CAS, 1988), Lai and Huang (1990) suggested a new classification of temperate, subpolar and quasipolar glaciers, corresponding to the maritime-, subcontinental- and extremely contin…  相似文献   
43.
44.
Glacier inventory compilation during the past 20 years and modifications of that for the Eastern Pamir and Banggong Lake indicate that there are 46,342 modern glaciers with a total area and volume of 59415 km2 and 5601 km3 respectively in China. These glaciers can be classified into maritime and continental (including sub-continental and extremely continental) types. Researches show that glaciers in China have been retreating since the Little Ice Age and the mass wastage was accelerated during the past 30 to 40 years. Being an important part of glaciological studies in China, ice core climatic and environmental studies on Tibetan Plateau and in the Antarctica have provided abundant, high resolution information about past climatic and environmental evolution over the Tibetan Plateau and Antarctica. Except for different parameters recorded in ice cores relating to climate and environment changes on Tibetan Plateau, records from ice cores extracted from different glaciers show that the discrepancies in climatic and environmental changes on the north and south parts of the plateau may be the consequence of different influencing effects from terrestrial and solar sources. Glaciological and meteorological phenomena imply that Lambert Glacier valley is an important boundary of climate in the east Antarctica, which is thought to be connected with cyclonic activities and Circum-polar Waves over the Antarctica.  相似文献   
45.
46.
Broadly speaking, there is, at least within geomorphic circles, a general acceptance that rocks with low albedos will warm both faster and to higher temperatures than rocks with high albedos, reflectivity influencing radiative warming. Upon this foundation are built notions of weathering in respect of the resulting thermal differences, both at the grain scale and at the scale of rock masses. Here, a series of paving bricks painted in 20 per cent reflectivity intervals from black through to white were used to monitor albedo‐influenced temperatures at a site in northern Canada in an attempt to test this premise. Temperatures were collected, for five months, for the rock surface and the base of the rock, the blocks being set within a mass of local sediment. Resulting thermal data did indeed show that the dark bricks were warmer than the white but only when their temperatures were equal to or cooler than the air temperature. As brick temperature exceeded that of the air, so the dark and light bricks moved to parity; indeed, the white bricks frequently became warmer than the dark. It is argued that this ‘negating’ of the albedo influence on heating is a result of the necessity of the bricks, both white and black, to convect heat away to the surrounding cooler air; the darker brick, being hotter, initially convects faster than the white as a product of the temperature difference between the two media. Thus, where the bricks become significantly hotter than the air, they lose energy to that air and so their respective temperatures become closer, the albedo influence being superceded by the requirement to equilibrate with the surrounding air. It is argued that this finding will have importance to our understanding of weathering in general and to our perceptions of weathering differences between different lithologies. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
47.
The net surface snow accumulation on the Antarctic ice sheet is determined by a combination of precipitation, sublimation and wind redistribution. We present a one-year record of hourly snow-height measurements at LGB69 (70°50'S, 77°04'E, 1850 m a.s.l.). east side of Lambert Glacier basin (LGB), and 4 year record at G3 (70°53'S, 69°52'E, 84 m a.s.l.), Amery Ice Shelf (AIS). The measurements were made with ultrasonic sensors mounted on automatic weather stations installed at two sites. The snow accumulation at LGB69 is approximately 70 cm. Throughout the winter, between April and September, there was little change in surface snow height (SSH) at the two sites. The negative SSH change is due to densification at LGB69, and is due to both ablation and densification at G3. The strongest accumulation at two sites occurred during the period between October and March (accounting for 101.6% at LGB69), with four episodic increasing events occurring during 2002 for LGB69, and eight events during 1999-2002 for G  相似文献   
48.
A metamorphic petrological study, in conjunction with recent precise geochronometric data, revealed a complex PTt path for high-grade gneisses in a hitherto poorly understood sector of the Mesoproterozoic Maud Belt in East Antarctica. The Maud Belt is an extensive high-grade, polydeformed, metamorphic belt, which records two significant tectono-thermal episodes, once towards the end of the Mesoproterozoic and again towards the late Neoproterozoic/Cambrian. In contrast to previous models, most of the metamorphic mineral assemblages are related to a Pan-African tectono-thermal overprint, with only very few relics of late Mesoproterozoic granulite-facies mineral assemblages (M1) left in strain-protected domains. Petrological and mineral chemical evidence indicates a clockwise PTt path for the Pan-African orogeny. Peak metamorphic (M2b) conditions recorded by most rocks in the area (T = 709–785 °C and P = 7.0–9.5 kbar) during the Pan-African orogeny were attained subsequent to decompression from probably eclogite-facies metamorphic conditions (M2a).The new data acquired in this study, together with recent geochronological and geochemical data, permit the development of a geodynamic model for the Maud Belt that involves volcanic arc formation during the late Mesoproterozoic followed by extension at 1100 Ma and subsequent high-grade tectono-thermal reworking once during continent–continent collision at the end of the Mesoproterozoic (M1; 1090–1030 Ma) and again during the Pan-African orogeny (M2a, M2b) between 565 and 530 Ma. Post-peak metamorphic K-metasomatism under amphibolite-facies conditions (M2c) followed and is ascribed to post-orogenic bimodal magmatism between 500 and 480 Ma.  相似文献   
49.
Extensive high-grade polydeformed metamorphic provinces surroundingArchaean cratonic nuclei in the East Antarctic Shield recordtwo tectono-thermal episodes in late Mesoproterozoic and lateNeoproterozoic–Cambrian times. In Western Dronning MaudLand, the high-grade Mesoproterozoic Maud Belt is juxtaposedagainst the Archaean Grunehogna Province and has traditionallybeen interpreted as a Grenvillian mobile belt that was thermallyoverprinted during the Early Palaeozoic. Integration of newU–Pb sensitive high-resolution ion microprobe and conventionalsingle zircon and monazite age data, and Ar–Ar data onhornblende and biotite, with thermobarometric calculations onrocks from the H.U. Sverdrupfjella, northern Maud Belt, resultedin a more complex PTt evolution than previouslyassumed. A c. 540 Ma monazite, hosted by an upper ampibolite-faciesmineral assemblage defining a regionally dominant top-to-NWshear fabric, provides strong evidence for the penetrative deformationin the area being of Pan-African age and not of Grenvillianage as previously reported. Relics of an eclogite-facies garnet–omphaciteassemblage within strain-protected mafic boudins indicate thatthe peak metamorphic conditions recorded by most rocks in thearea (T = 687–758°C, P = 9·4–11·3kbar) were attained subsequent to decompression from P >12·9 kbar. By analogy with limited U–Pb singlezircon age data and on circumstantial textural grounds, thisearlier eclogite-facies metamorphism is ascribed to subductionand accretion around 565 Ma. Post-peak metamorphic K-metasomatismunder amphibolite-facies conditions is ascribed to the intrusionof post-orogenic granite at c. 480 Ma. The recognition of extensivePan-African tectonism in the Maud Belt casts doubts on previousRodinia reconstructions, in which this belt takes a pivotalposition between East Antarctica, the Kalahari Craton and Laurentia.Evidence of late Mesoproterozoic high-grade metamorphism duringthe formation of the Maud Belt exists in the form of c. 1035Ma zircon overgrowths that are probably related to relics ofgranulite-facies metamorphism recorded from other parts of theMaud Belt. The polymetamorphic rocks are largely derived froma c. 1140 Ma volcanic arc and 1072 ± 10 Ma granite. KEY WORDS: Maud Belt; Pan-African orogeny; geochronology; PTt path, East Antarctica  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号