首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   352篇
  免费   21篇
  国内免费   8篇
测绘学   1篇
大气科学   6篇
地球物理   102篇
地质学   99篇
海洋学   96篇
综合类   2篇
自然地理   75篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   5篇
  2017年   9篇
  2016年   9篇
  2015年   5篇
  2014年   10篇
  2013年   28篇
  2012年   21篇
  2011年   15篇
  2010年   16篇
  2009年   23篇
  2008年   27篇
  2007年   15篇
  2006年   31篇
  2005年   14篇
  2004年   22篇
  2003年   13篇
  2002年   11篇
  2001年   3篇
  2000年   12篇
  1999年   8篇
  1998年   8篇
  1997年   6篇
  1996年   5篇
  1995年   4篇
  1994年   2篇
  1993年   5篇
  1992年   7篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   4篇
  1985年   6篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有381条查询结果,搜索用时 15 毫秒
31.
Stormwater runoff plumes, municipal wastewater plumes, and natural hydrocarbon seeps are important pollution hazards for the heavily populated Southern California Bight (SCB). Due to their small size, dynamic and episodic nature, these hazards are difficult to sample adequately using traditional in situ oceanographic methods. Complex coastal circulation and persistent cloud cover can further complicate detection and monitoring of these hazards. We use imagery from space-borne synthetic aperture radar (SAR), complemented by field measurements, to examine these hazards in the SCB. The hazards are detectable in SAR imagery because they deposit surfactants on the sea surface, smoothing capillary and small gravity waves to produce areas of reduced backscatter compared with the surrounding ocean. We suggest that high-resolution SAR, which obtains useful data regardless of darkness or cloud cover, could be an important observational tool for assessment and monitoring of coastal marine pollution hazards in the SCB and other urbanized coastal regions.  相似文献   
32.
Zircons from the Devils Kitchen rhyolite in the PleistoceneCoso Volcanic field, California have been analyzed by in situPb/U ion microprobe (SHRIMP-RG) and by detailed cathodoluminescenceimaging. The zircons yield common-Pb-corrected and disequilibrium-corrected206Pb/238U ages that predate a previously reported K–Arsanidine age by up to 200 kyr, and the range of ages exhibitedby the zircons is also approximately 200 kyr. Cathodoluminescenceimaging indicates that zircons formed in contrasting environments.Most zircons are euhedral, and a majority of the zircons areweakly zoned, but many also have anhedral, embayed cores, witheuhedral overgrowths and multiple internal surfaces that aretruncated by later crystal zones. Concentrations of U and Thvary by two orders of magnitude within the zircon population,and by 10–20 times between zones within some zircon crystals,indicating that zircons were transferred between contrastingchemical environments. A zircon saturation temperature of 750°Coverlaps within error a previously reported phenocryst equilibrationtemperature of 740 ± 25°C. Textures in zircons indicativeof repeated dissolution and subsequent regrowth are probablycaused by punctuated heating by mafic magma input into rhyolite.The overall span of ages and large variation in U and Th concentrations,combined with calculated zircon saturation temperatures andresorption times, are most compatible with crystallization inmagma bodies that were emplaced piecemeal in the crust at Cosoover 200 kyr prior to eruption, and that were periodically rejuvenatedor melted by subsequent basaltic injections. KEY WORDS: zircon geochronology; residence time; rhyolite; ion microprobe; California  相似文献   
33.
Southern California faces an imminent freshwater shortage. To better assess the future impact of this water crisis, it is essential that we develop continental archives of past hydrological variability. Using four sediment cores from Lake Elsinore in Southern California, we reconstruct late Holocene (3800 calendar years B.P.) hydrological change using a twentieth-century calibrated, proxy methodology. We compared magnetic susceptibility from Lake Elsinore deep basin sediments, lake level from Lake Elsinore, and regional winter precipitation data over the twentieth century to calibrate the late Holocene lake sediment record. The comparison revealed a strong positive, first-order relationship between the three variables. As a working hypothesis, we suggest that periods of greater precipitation produce higher lake levels. Greater precipitation also increases the supply of detritus (i.e., magnetic-rich minerals) from the lake's surrounding drainage basin into the lake environment. As a result, magnetic susceptibility values increase during periods of high lake level. We apply this modern calibration to late Holocene sediments from the lake's littoral zone. As an independent verification of this hypothesis, we analyzed 18O(calcite), interpreted as a proxy for variations in the precipitation:evaporation ratio, which reflect first order hydrological variability. The results of this verification support our hypothesis that magnetic susceptibility records regional hydrological change as related to precipitation and lake level. Using both proxy data, we analyzed the past 3800 calendar years of hydrological variability. Our analyses indicate a long period of dry, less variable climate between 3800 and 2000 calendar years B.P. followed by a wet, more variable climate to the present. These results suggest that droughts of greater magnitude and duration than those observed in the modern record have occurred in the recent geological past. This conclusion presents insight to the potential impact of future droughts on the over-populated, water-poor region of Southern California.  相似文献   
34.
A fundamental geological tenet is that as landscapes evolve over graded to geologic time, geologic structures control patterns of topographic distribution in mountainous areas such that terrain underlain by competent rock will be higher than terrain underlain by incompetent rock. This paper shows that in active orogens where markedly weak and markedly strong rocks are juxtaposed along contacts that parallel regional structures, relatively high topography can form where strain is localized in the weak rock. Such a relationship is illustrated by the topography of the central Coast Ranges between the Pacific coastline and the San Andreas fault zone (SAFZ), and along the length of the Gabilan Mesa (the “Gabilan Mesa segment” of the central Coast Ranges). Within the Gabilan Mesa segment, the granitic upper crust of the Salinian terrane is in contact with the accretionary-prism mélange upper crust of the Nacimiento terrane along the inactive Nacimiento fault zone. A prominent topographic lineament is present along most of this lithologic boundary, approximately 50 to 65 km southwest of the SAFZ, with the higher topography formed in the mélange on the southwest side of the Nacimiento fault.This paper investigates factors influencing the pattern of topographic development in the Gabilan Mesa segment of the central Coast Ranges by correlating shortening magnitude with the upper-crust compositions of the Salinian and Nacimiento terranes. The fluvial geomorphology of two valleys in the Gabilan Mesa, which is within the Salinian terrane, and alluvial geochronology based on optically-stimulated luminescence (OSL) age estimates, reveal that the magnitude of shortening accommodated by down-to-the-southwest tilting of the mesa since 400 ka is less than 1 to 2 m. Our results, combined with those of previous studies, indicate that at least 63% to 78% of late-Cenozoic, northeast-southwest directed, upper-crustal shortening across the Gabilan Mesa segment has been accommodated within the Nacimiento terrane. This is significant because perpendicular to orogenic strike the Nacimiento terrane constitutes less than ¼ of the distance between the coast and the SAFZ, and the other ¾ (or greater) of the distance between the coast and the SAFZ is underlain by the granitic upper crust of the Salinian terrane. We propose that strain and mountain building are localized within the Nacimiento terrane because it consists predominantly of the relatively weak Franciscan Complex mélange, and because the upper crust of the Salinian terrane is composed of relatively strong granitic rocks. Our hypothesis is supported by the distribution of post-seismic surface uplift associated with the 2003, 6.5 MW San Simeon earthquake, which mimics the topography of the southwestern part of the Gabilan Mesa segment of the central Coast Ranges.  相似文献   
35.
It is hypothesized that self-defined mixed-race persons live in residentially mixed areas in the largest metropolitan areas in California. The hypothesis is tested by examining the distribution of mixed-race persons among ethnically and racially diverse and nondiverse neighborhoods in the San Francisco and Los Angeles Metropolitan Areas. The research confirmed that mixed-race individuals are more likely to live in areas with ethnic diversity and that the tendency is greater for the mixed-race population in the San Francisco–Oakland Metropolitan Areas than in the Los Angeles Metropolitan Area. Mixed-race individuals live in neighborhoods which are diverse with mixes of all four major ethnic and racial groups, and in “well-off” (but not the most affluent) neighborhoods. The study also shows that the mixed-race population is youthful. The association of mixed-race individuals and racially integrated neighborhoods will have important implications for the evolving nature of spatial integration in California specifically, and the United States more generally.  相似文献   
36.
The Anvil Spring Canyon fan of the Panamint Range piedmont in central Death Valley was built entirely by water-flow processes, as revealed by an analysis of widespread 2- to 12-m-high stratigraphic cuts spanning the 9·7 km radial length of this 2·5–5·0° sloping fan. Two facies deposited from fan sheetfloods dominate the fan from apex to toe. The main one (60–95% of cuts) consists of sandy, granular, fine to medium pebble gravel that regularly and sharply alternates with cobbly coarse to very coarse pebble gravel in planar couplets 5–25 cm thick oriented parallel to the fan surface. The other facies (0–25% of cuts) comprises 10- to 60-cm-thick, wedge-planar and wedge-trough beds of pebbly sand and sandy pebble gravel in backsets sloping 3–28°. Both facies are interpreted as resulting from rare, sediment-charged flash floods from the catchment, and were deposited by supercritical standing waves of expanding sheetfloods on the fan. Standing waves were repeatedly initiated, enlarged, migrated, and then terminated either by gradually rejoining the flood or by more violent breakage and washout. The frequent autocyclic growth and destruction of standing waves during an individual sheetflood resulted in the deposition of multiple coarse and fine couplet and backset sequences 50–250 cm thick across the active depositional lobe of the fan. Erosional intensity during washout of the standing wave determined whether early-phase backset-bed deposits or washout-phase sheetflood couplet deposits were selectively preserved in a given cycle. Two minor facies are also found in the Anvil fan. Pebble–cobble gravel lags (0–20% of cuts) are present above erosional scours into the sheetflood couplet and backset deposits. They consist of coarse gravel concentrated through fine-fraction winnowing of the host sheetflood facies by sediment-deficient water flows. This reworking occurred during recessional flood stage or from non-catastrophic discharge during the long intervals between major flash floods. This facies is common at the surface, giving rise to a ‘braided-stream’ appearance. However, it is stratigraphically limited, present as thin, continuous to discontinuous beds or lenses that bound 50- to 250-cm-thick sheetflood sequences. The other minor facies of the Anvil fan consists of clast-supported and imbricated, thickly stratified, pebbly, cobbly, boulder gravel present in narrow, radially aligned ribbons nested within sheetflood deposits. This facies is interpreted as representing deposition in the incised channel of the fan, a subenvironment characterized by greater flow competence resulting from maintained depth from channel-wall confinement, and by more frequent water flows and winnowing events caused by its direct connection with the catchment feeder channel.  相似文献   
37.
Two large, adjoining alluvial fans of the Panamint Range piedmont, Death Valley, California, are composed of different facies assemblages deposited by contrasting sedimentary processes. The Anvil Spring fan was built solely by water-flow processes (incised-channel floods and sheetfloods), whereas the neighbouring Warm Spring fan has been constructed principally by debris flows. The boundary between these fans delineates a sharp provincial piedmont contact between sheetflood-dominated fans to the south and debris-flow-dominated fans to the north. Factors such as climate, catchment area, fan area, catchment relief, aspect, vegetation types and density, and neotectonic setting are essentially identical for these two fans. The key difference between them is that their catchments are underlain by dissimilar bedrock types, which weather to yield distinctive sediment suites. Weathering of the granite and andesite of the Anvil fan catchment produces significant volumes of medium to very coarse sand, granules, pebbles, cobbles and boulders, but minimal silt and clay. In contrast, the shale, quartzite and dolomite that dominate bedrock in the Warm Spring catchment weather to yield a wide suite of sedimentary particles spanning from clay to boulders. The abundance of mud, and the unsorted character of the yielded sediment, cause precipitation-induced slope failures in the Warm Spring catchment to transform readily into debris flows. This propensity is due to the low permeability of the colluvial sediment, which causes added water to become trapped quickly and pore pressure to rise rapidly, promoting transformations to debris flows. In contrast, the limited volume of sediment finer than medium sand yielded from the Anvil fan catchment causes the colluvium to have high permeability. This factor prevents the transformation of wet colluvium to a debris flow during hydrologically triggered slope failures, instead maintaining sediment transport as entrained bed load or suspended load in a water flow.  相似文献   
38.
An understanding of the behavior of cohesive sediment is required to solve various engineering problems such as scour around bridge elements, mitigation of soil erosion, pavement design, river bed degradation,stable channel design. Pavement foundation designers principally use the California bearing ratio(CBR)to describe the subgrade and subbase materials and their strength. Several laboratory experiments were done to study the variation in the CBR of cohesive mixtures comprised of clay-gravel m...  相似文献   
39.
We investigate a new proxy for ENSO climate variability based on particle‐size data from long‐term, coastal sediment records preserved in a barrier estuary setting. Corresponding ~4–8 year periodicities identified from Wavelet analysis of particle‐size data from Pescadero Marsh in Central Coast California and rainfall data from San Francisco reflect established ENSO periodicity, as further evidenced in the Multivariate ENSO Index (MEI), and thus confirms an important ENSO control on both precipitation and barrier regime variability. Despite the fact that barrier estuary mean particle size is influenced by coastal erosion, precipitation and streamflow, balanced against barrier morphology and volume, it is encouraging that considerable correspondence can also be observed in the time series of MEI, regional rainfall and site‐based mean particle size over the period 1871–2008. This correspondence is, however, weakened after c.1970 by temporal variation in sedimentation rate and event‐based deposition. These confounding effects are more likely when: (i) accommodation space may be a limiting factor; and (ii) particularly strong El Niños, e.g. 1982/1983 and 1997/1998, deposit discrete >cm‐thick units during winter storms. The efficacy of the sediment record of climate variability appears not to be compromised by location within the back‐barrier setting, but it is limited to those El Niños that lead to barrier breakdown. For wider application of this particle size index of ENSO variability, it is important to establish a well‐resolved chronology and to sample the record at the appropriate interval to characterize deposition at a sub‐annual scale. Further, the sample site must be selected to limit the influence of decreasing accommodation space through time (infilling) and event‐based deposition. It is concluded that particle‐size data from back‐barrier sediment records have proven potential for preserving evidence of sub‐decadal climate variability, allowing researchers to explore temporal and spatial patterns in phenomena such as ENSO. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
40.
Near Ash Hill in the Mojave Desert, California, there is an impressive channel that is cut in bedrock. The channel is in a pass through which Lake Manly, the pluvial lake that occupied Death Valley, could have overflowed. Indeed, the channel has been attributed to such overflow. The pass, however, is 500 m above the highest shorelines of Lake Manly in Death Valley, and evidence from cores from dry lakes on either side of the pass does not support the overflow hypothesis. Despite its size, new field observations suggest that the channel was actually eroded by local runoff. Water from several tributaries collects into a single channel at this point, and the resulting discharge is apparently sufficient to cause retreat of a knickpoint from the downstream edge of the basalt flow into which the channel is cut. © 1998 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号