首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6556篇
  免费   1436篇
  国内免费   2936篇
测绘学   67篇
大气科学   567篇
地球物理   2965篇
地质学   5481篇
海洋学   907篇
天文学   18篇
综合类   387篇
自然地理   536篇
  2024年   17篇
  2023年   94篇
  2022年   199篇
  2021年   212篇
  2020年   294篇
  2019年   395篇
  2018年   354篇
  2017年   284篇
  2016年   385篇
  2015年   372篇
  2014年   439篇
  2013年   569篇
  2012年   459篇
  2011年   495篇
  2010年   448篇
  2009年   515篇
  2008年   455篇
  2007年   545篇
  2006年   553篇
  2005年   426篇
  2004年   407篇
  2003年   356篇
  2002年   290篇
  2001年   247篇
  2000年   286篇
  1999年   259篇
  1998年   215篇
  1997年   222篇
  1996年   218篇
  1995年   165篇
  1994年   154篇
  1993年   129篇
  1992年   122篇
  1991年   72篇
  1990年   74篇
  1989年   52篇
  1988年   36篇
  1987年   28篇
  1986年   17篇
  1985年   14篇
  1984年   14篇
  1983年   5篇
  1982年   3篇
  1981年   3篇
  1979年   8篇
  1978年   2篇
  1977年   10篇
  1976年   2篇
  1974年   1篇
  1954年   7篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
Hydrocyclones are widely used in the mining and chemical industries. An attempt has been made in this study, to develop a CFD (computational fluid dynamics) model, which is capable of predicting the flow patterns inside the hydrocyclone, including accurate prediction of flow split as well as the size of the air-core. The flow velocities and air-core diameters are predicted by DRSM (differential Reynolds stress model) and LES (large eddy simulations) models were compared to experimental results. The predicted water splits and air-core diameter with LES and RSM turbulence models along with VOF (volume of fluid) model for the air phase, through the outlets for various inlet pressures were also analyzed. The LES turbulence model led to an improved turbulence field prediction and thereby to more accurate prediction of pressure and velocity fields. This improvement was distinctive for the axial profile of pressure, indicating that air-core development is principally a transport effect rather than a pressure effect.  相似文献   
92.
The Load/Unload Response Ratio (LURR) method is proposed for short-to-intermediate-term earthquake prediction [Yin, X.C., Chen, X.Z., Song, Z.P., Yin, C., 1995. A New Approach to Earthquake Prediction — The Load/Unload Response Ratio (LURR) Theory, Pure Appl. Geophys., 145, 701–715]. This method is based on measuring the ratio between Benioff strains released during the time periods of loading and unloading, corresponding to the Coulomb Failure Stress change induced by Earth tides on optimally oriented faults. According to the method, the LURR time series usually climb to an anomalously high peak prior to occurrence of a large earthquake. Previous studies have indicated that the size of critical seismogenic region selected for LURR measurements has great influence on the evaluation of LURR. In this study, we replace the circular region usually adopted in LURR practice with an area within which the tectonic stress change would mostly affect the Coulomb stress on a potential seismogenic fault of a future event. The Coulomb stress change before a hypothetical earthquake is calculated based on a simple back-slip dislocation model of the event. This new algorithm, by combining the LURR method with our choice of identified area with increased Coulomb stress, is devised to improve the sensitivity of LURR to measure criticality of stress accumulation before a large earthquake. Retrospective tests of this algorithm on four large earthquakes occurred in California over the last two decades show remarkable enhancement of the LURR precursory anomalies. For some strong events of lesser magnitudes occurred in the same neighborhoods and during the same time periods, significant anomalies are found if circular areas are used, and are not found if increased Coulomb stress areas are used for LURR data selection. The unique feature of this algorithm may provide stronger constraints on forecasts of the size and location of future large events.  相似文献   
93.
We present evidence for a decrease in the magnitude of Tharsis-circumferential compressive stress during the Late Hesperian to the Middle Amazonian based on chronologic changes in the predominant style of faulting in southern Amazonis Planitia. Using high-resolution MOLA topography, we identify a population of strike-slip faults that exhibit Middle Amazonian-aged displacements of regional chrono-stratigraphic units. These strike-slip faults are adjacent to an older population of previously documented Late Hesperian-aged thrust faults (wrinkle ridges). Along-strike orientations of these thrust and strike-slip faults reveal the Tharsis-radial stress to be the area's most compressive remote principal stress and that this stress orientation and magnitude persisted throughout the Late Hesperian to the Middle Amazonian. We show that the change in the predominant style of faulting from thrust faulting to strike-slip faulting during this time requires a decrease of the Tharsis-circumferential compressive stress to a magnitude less than lithostatic load, with negligible change in stress orientation.  相似文献   
94.
LI Hong-jun  CHI Shi-chun  LIN Gao 《岩土力学》2006,27(Z1):1063-1068
A simplified procedure for evaluating aseismic stability of slope subjected to earthquake shaking, in which the effect of dynamic shear strength and time-history stress on the yielding angular acceleration of sliding block is taken into account, is presented. The fundamental feature of this procedure is the dynamic shear strength. The numerical computations are performed by using the proposed method. It is shown that the computed sliding displacement for a given core dam, with either method of dynamic shear strength properly considered, is more rational compared with the conventional computational results based on static shear strength.  相似文献   
95.
The sequence of sediment behaviour during wave-induced liquefaction   总被引:4,自引:0,他引:4  
This paper presents the results of an experimental investigation of the complete sequence of sediment behaviour beneath progressive waves. The sediment was silty with d 50 = 0.060 mm. Two kinds of measurements were carried out: pore-water pressure measurements (across the sediment depth), and water-surface elevation measurements. The process of liquefaction/compaction was videotaped from the side simultaneously with the pressure and water-surface elevation measurements. The video records were then analysed to measure: (i) the time development of the mudline, (ii) the time development of liquefaction and compaction fronts in the sediment and (iii) the characteristics of the orbital motion of the liquefied sediment including the motion of the interface between the water body and the sediment. The ranges of the various quantities in the tests were: wave height, H  = 9–17 cm, wave period, T  = 1.6 sec, water depth = 42 cm, and the Shields parameter = 0.34–0.59. The experiments reveal that, with the introduction of waves, excess pore pressure builds up, which is followed by liquefaction during which internal waves are experienced at the interface of the water body and the liquefied sediment, the sequence of processes known from a previous investigation. This sequence of processes is followed by dissipation of the accumulated excess pore pressure and compaction of the sediment which is followed by the formation of bed ripples. The present results regarding the dissipation and compaction appear to be in agreement with recent centrifuge wave-tank experiments. As for the final stage of the sequence of processes (formation of ripples), the ripple steepness (normalized with the angle of repose) for sediment with liquefaction history is found to be the same as that in sediment with no liquefaction history.  相似文献   
96.
The Plattengneis shear zone is a 250–600 m thick, flat lying, Cretaceous, eclogite facies, mylonitic shear zone, with north-over-south transport direction, that is exposed over almost 1000 km2 in the Koralpe region along the eastern margin of the Alps. Although the shear zone is one of the largest in the Alps, its role in the Eoalpine metamorphic evolution and the subsequent exhumation of the region, remain enigmatic and its large-scale geometry is not well understood. The outcrop pattern suggests that the shear zone is made up of a single sheet that is folded into a series of open syn- and antiforms with wavelengths of about 10 km. Eclogite bodies occur above, within and below the shear zone and there is no metamorphic grade change across the shear zone. In the south, the fold axes strike east–west and plunge shallowly to the east. In the north, the fold axes are oriented in north–south direction and form a dome shaped structure of the shear zone. Total shortening during this late stage warping event was of the order of 5%. Indirect evidence constrains this folding event to have occurred between 80 and 50 Ma and the fold geometry implies that the final exhumation in the Koralpe occurred somewhat later than further north. Interestingly, the shear zone appears to strike out of the topography in the south and dip into the topography in the north, so that north of the shear zone only hanging-wall rocks are exposed and south of it only foot-wall rocks. Possibilities for the geometric relationship of the Plattengneis shear zone with the surrounding south dipping detachments are discussed.  相似文献   
97.
The Pacific plate and the Philippine Sea plate overlap and subduct underneath the Kanto region, central Japan, causing complex seismic activities in the upper mantle. In this research, we used a map selection tool with a graphic display to create a data set for earthquakes caused by the subducting motion of the Philippine Sea plate that are easily determined. As a result, we determined that there are at least four earthquake groups present in the upper mantle above the Pacific plate. Major seismic activity (Group 1) has been observed throughout the Kanto region and is considered to originate in the uppermost part of mantle in the subducted Philippine Sea plate, judging from the formation of the focal region and comparison with the 3D structure of seismic velocity. The focal mechanism of these earthquakes is characterized by the down-dip compression. A second earthquake layer characterized by down-dip extension (Group 2), below the earthquakes in this group, is also noted. The focal region for those earthquakes is considered to be located at the lower part of the slab mantle, and the Pacific plate located directly below is considered to influence the activity. Earthquakes located at the shallowest part (Group 3) form a few clusters distributed directly above the Group 1 focal region. Judging from the characteristics of later phases in these earthquakes and comparing against the 3D structure of seismic velocity, the focal regions for the earthquakes are considered to be located near the upper surface of the slab. Another earthquake group (Group 4) originates further below Group 2; it is difficult to consider these earthquakes within a single slab. The seismic activities representing the upper area of the Philippine Sea plate are Group 3. This paper proposes a slab geometry model that is substantially different from conventional models by strictly differentiating the groups.  相似文献   
98.
周晔  张国榉 《探矿工程》2006,33(9):46-48
以ANSYS为平台,按照真实工作状态对凿岩钎杆进行了瞬态动力学分析,并对不同活塞形状下分析结果数据进行了比较,为冲击凿岩系统设计提供了理论依据。  相似文献   
99.
在CFG桩复合地基设计中,褥垫层的厚度设计是一个重点,它是复合地基承载力能否全部发挥的关键因素之一。但其设计上基本是靠经验取值,缺少理论根据。从理论方面入手,推导了褥垫层厚度的理论计算方法,给出了最佳垫层厚度、桩土应力比的解析表达式。  相似文献   
100.
The Walter‐Outalpa shear zone in the southern Curnamona Province of NE South Australia is an example of a shear zone that has undergone intensely focused fluid flow and alteration at mid‐crustal depths. Results from this study have demonstrated that the intense deformation and ductile shear zone reactivation, at amphibolite facies conditions of 534 ± 20 °C and 500 ± 82 MPa, that overprint the Proterozoic Willyama Supergroup occurred during the Delamerian Orogeny (c. 500 Ma) (EPMA monazite ages of 501 ± 16 and 491 ± 19 Ma). This is in contrast to the general belief that the majority of basement deformation and alteration in the southern Curnamona Province occurred during the waning stages of the Olarian Orogeny (c. 1610–1580 Ma). These shear zones contain hydrous mineral assemblages that cut wall rocks that have experienced amphibolite facies metamorphism during the Olarian Orogeny. The shear zone rock volumes have much lower δ18O values (as low as 1‰) than their unsheared counterparts (7–9‰), and calculated fluid δ18O values (5–8‰) consistent with a surface‐derived fluid source. Hydrous minerals show a decrease in δD(H2O) from ?14 to ?22‰, for minerals outside the shear zones, to ?28 to ?40‰, for minerals within the shear zones consistent with a contribution from a meteoric source. It is unclear how near‐surface fluids initially under hydrostatic pressure penetrate into the middle crust where fluid pressures approach lithostatic, and where fluid flow is expected to be dominantly upward because of pressure gradients. We propose a mechanism whereby faulting during basin formation associated with the Adelaidean Rift Complex (c. 700 Ma) created broad hydrous zones containing mineral assemblages in equilibrium with surface waters. These panels of fault rock were subsequently buried to depths where the onset of metamorphism begins to dehydrate the fault rock volumes evolving a low δ18O fluid that is channelled through shear zones related to Delamerian Orogenic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号