首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   14篇
  国内免费   5篇
地球物理   67篇
地质学   23篇
海洋学   13篇
  2021年   1篇
  2019年   1篇
  2017年   6篇
  2016年   7篇
  2015年   6篇
  2014年   8篇
  2013年   8篇
  2012年   4篇
  2011年   6篇
  2010年   10篇
  2009年   8篇
  2008年   3篇
  2007年   7篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   5篇
  1995年   1篇
排序方式: 共有103条查询结果,搜索用时 15 毫秒
71.
Heavy oil accumulation in deep Ordovician carbonate stratum was discovered at present burial depths greater than 6600 m in the northern Tarim Basin, NW China. Density of the unusual ultra-deep heavy oils is greater than 0.92 g/cm3 at 20 °C. Crude oil produced from 6598 to 6710 m interval of the Ha9 well was selected for the thiophenic and sulfidic compounds characterization in order to understand the mechanism of heavy oil accumulation in the ultra-deep strata. In addition to the common thiophenic compounds, four homologues of novel polycyclic sulfides named as 1,1,4a,6-tetramethyl-9-alkyl-1,2,3,4,4a,9b-hexahydrodibenzothiophenes (H6DBTs, 9-alkyl = H, methyl, ethyl, and propyl, respectively) were identified in Ha9 well crude oil, and it is the first time these biomarkers were detected in natural occurrence. H6DBTs were generated from isoprenoid-related precursors reacted with reduced-state sulfur in early diagenesis stage by bacterial sulfate reduction. The occurrence of H6DBTs further indicated biodegradation of the reservoir oil at a relatively mild temperature (60–65 °C), a favorable condition for microorganism survival. According to the history of reservoir forming, oil and gas accumulation occurred in reservoirs during the Late Permian period and then being uplifted, suffering biodegradation. Oil quality was significantly altered as a result of strong biodegradation since the Triassic. Heavy oil reservoir was buried deeper around. 5 Ma, leading to a rapid increase in reservoir temperature up to 150 °C at a burial depth of 6600 m. The quick burial and elevated temperature of the reservoir were favorable to the preservation of H6DBTs.  相似文献   
72.
73.
74.
75.
76.
77.
A microbial consortium was obtained by enrichment culture of sea water samples collected from Botan oil port in Xiamen, China, using the persistent high concentration of a mixture of polycyclic aromatic hydrocarbons enrichment strategy. Denaturing gradient gel electrophoresis (DGGE) was used to investigate the bacterial composition and community dynamic changes based on PCR amplification of 16S rRNA genes during batch culture enrichment. Using the spray-plate method, three bacteria, designated as BL01, BL02 and BL03, which corresponded to the dominant bands in the DGGE profiles, were isolated from the consortium. Sequence analysis showed that BL01, BL02 and BL03 were phylogenetically close to Ochrobactrum sp., Stenotrophomonas maltophilia and Pseudomonas fluorescens, respectively. The degradation of benzo(a)pyrene (BaP), a model high-molecular-weight polycyclic aromatic hydrocarbon (HMW PAH) compound was investigated using individual isolates, a mixture of the three isolates, and the microbial consortium (BL) originally isolated from the oil port sea water. Results showed that the order of degradative ability was BL > the mixture of the three isolates > individual isolates. BL degraded 44.07% of the 10 ppm BaP after 14 days incubation, which showed the highest capability for HMW PAH compound degradation.Our results revealed that this high selective pressure strategy was feasible and effective in enriching the HMW PAH-degraders from the original sea water samples.  相似文献   
78.
Biodegradation of naphthalene by Micrococcus sp., isolated from the effluent of an activated sludge plant, was studied. The effects of pH (5–8), glucose concentration (100–1000 mg/L) and inoculum concentrations (1–5%) on the growth and naphthalene degradation potential of Micrococcus sp. were investigated. Maximum naphthalene degradation and subsequent high microbial growth were observed at optimum pH (pH 7), glucose concentration (500 mg/L) and inoculum concentration (3%). To investigate the maximum naphthalene tolerance potential of Micrococcus sp., very high concentrations of naphthalene (500–5000 mg/L) were used in the presence of non‐ionic surfactants. The examined surfactants (Triton X‐100 and Tween‐80) increased the bioavailability of naphthalene to the microbes and Complete naphthalene degradation by Micrococcus sp. was observed at an initial naphthalene concentration of 500 mg/L. However, the degradation potential decreases as the naphthalene concentration increases. Very high naphthalene concentrations also affected the growth of microbes and the corresponding substrate inhibition kinetics was described using four models (Haldane, Webb, Edward and Aiba). Based on correlation coefficient and percentage error values, all four substrate kinetic models were able to describe the dynamic behavior of naphthalene biodegradation by Micrococcus sp.  相似文献   
79.
Response surface methodology (RSM) was employed to investigate the effects of different operational parameters on the biological decolorization of a dye solution containing malachite green (MG) in the presence of macroalgae Chara sp. The investigated variables were the initial pH, initial dye concentration, algae amount, and reaction time. Central composite design (CCD) was used for the optimization of biological decolorization process. Predicted values were found to be in good agreement with experimental values (R2 = 0.982 and Adj‐R2 = 0.966), which indicated suitability of the employed model and the success of RSM. The results of optimization predicted by the model showed that maximum decolorization efficiency was achieved at the optimum condition of the initial pH 6.8, initial dye concentration 9.7 mg/L, algae amount 3.9 g, and reaction time 75 min. UV–VIS spectra and FT‐IR analysis showed degradation of MG.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号