首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9802篇
  免费   2037篇
  国内免费   1991篇
测绘学   230篇
大气科学   2055篇
地球物理   3333篇
地质学   4931篇
海洋学   1410篇
天文学   76篇
综合类   454篇
自然地理   1341篇
  2024年   39篇
  2023年   98篇
  2022年   247篇
  2021年   335篇
  2020年   371篇
  2019年   427篇
  2018年   351篇
  2017年   405篇
  2016年   362篇
  2015年   411篇
  2014年   599篇
  2013年   720篇
  2012年   489篇
  2011年   589篇
  2010年   523篇
  2009年   678篇
  2008年   740篇
  2007年   723篇
  2006年   667篇
  2005年   565篇
  2004年   509篇
  2003年   452篇
  2002年   443篇
  2001年   368篇
  2000年   348篇
  1999年   350篇
  1998年   325篇
  1997年   280篇
  1996年   248篇
  1995年   184篇
  1994年   182篇
  1993年   159篇
  1992年   145篇
  1991年   123篇
  1990年   96篇
  1989年   65篇
  1988年   74篇
  1987年   31篇
  1986年   17篇
  1985年   17篇
  1984年   11篇
  1983年   7篇
  1982年   8篇
  1981年   6篇
  1980年   11篇
  1978年   19篇
  1977年   5篇
  1972年   1篇
  1971年   1篇
  1954年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
72.
赵明  滕斌 《中国海洋工程》2004,18(2):267-280
The incompressible viscous uniform and shear flow past a circular cylinder is studied. The two-dimensional Navier-Stokes equations are solved by a finite element method. The governing equations are discretized by a weighted residual method in space. The stable three-step scheme is applied to the momentum equations in the time integration. The numerical model is firstly applied to the computation of the lid-driven cavity flow for its validation. The computed results agree well with the measured data and other numerical results. Then, it is used to simulate the viscous uniform and shear flow over a circular cylinder for Reynolds numbers from lO0 to lO00. The transient time interval before the vortex shedding occurs is shortened considerably by introduction of artificial perturbation. The computed Strouhal number, drag and lift coefficients agree well with the experimental data. The computation shows that the finite element model can be successfully applied to the viscous flow problem.  相似文献   
73.
Temperature data at different layers of the past 45 years were studied and we found adiploe mode in the thermocline layer (DMT): anomalously cold sea temperature off the coast of Sumatra and warm sea temperature in the western Indian Ocean. First, we analyzed the temperature and the temperature anomaly (TA) along the equatorial Indian Ocean in different layers. This shows that stronger cold and warm TA signals appeared at subsurface than at the surface in the tropical Indian O-cean. This result shows that there may be a strong dipole mode pattern in the subsurface tropical Indian Ocean. Secondly we used Empirical Orthogonal Functions (EOF) to analyze the TA at thermocline layer. The first EOF pattern was a dipole mode pattern. Finally we analyzed the correlations between DMT and surface tropical dipole mode (SDM), DMT and Nino 3 SSTA, etc. and these correlations are strong.  相似文献   
74.
A study of sea surface wave propagation and its energy deformation was carried out using field observations and numerical experiments over a region spanning the midshelf of the South Atlantic Bight (SAB) to the Altamaha River Estuary, GA. Wave heights on the shelf region correlate with the wind observations and directional observations show that most of the wave energy is incident from the easterly direction. Comparing midshelf and inner shelf wave heights during a time when there was no wind and hence no wave development led to an estimation of wave energy dissipation due to bottom friction with corresponding wave dissipation factor of 0.07 for the gently sloping continental shelf of the SAB. After interacting with the shoaling region of the Altamaha River, the wave energy within the estuary becomes periodic in time showing wave energy during flood to high water phase of the tide and very little wave energy during ebb to low water. This periodic modulation inside the estuary is a direct result of enhanced depth and current-induced wave breaking that occurs at the ebb shoaling region surrounding the Altamaha River mouth at longitude 81.23°W. Modelling results with STWAVE showed that depth-induced wave breaking is more important during the low water phase of the tide than current-induced wave breaking during the ebb phase of the tide. During the flood to high water phase of the tide, wave energy propagates into the estuary. Measurements of the significant wave height within the estuary showed a maximum wave height difference of 0.4 m between the slack high water (SHW) and slack low water (SLW). In this shallow environment these wave–current interactions lead to an apparent bottom roughness that is increased from typical hydraulic roughness values, leading to an enhanced bottom friction coefficient.  相似文献   
75.
Deep seawater in the ocean contains a great deal of nutrients. Stommel et al. have proposed the notion of a “perpetual salt fountain” (Stommel et al., 1956). They noted the possibility of a permanent upwelling of deep seawater with no additional external energy source. If we can cause deep seawater to upwell extensively, we can achieve an ocean farm. We have succeeded in measuring the upwelling velocity by an experiment in the Mariana Trench area using a special measurement system. A 0.3 m diameter, 280 m long soft pipe made of PVC sheet was used in the experiment. The measured data, a verification experiment, and numerical simulation results, gave an estimate of upwelling velocity of 212 m/day. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
76.
Several large deployments of neutrally buoyant floats took place within the Antarctic Intermediate (AAIW), North Atlantic Deep Water (NADW), and the Antarctic Bottom Water (AABW) of the South Atlantic in the 1990s and a number of hydrographic sections were occupied as well. Here we use the spatially and temporally averaged velocities measured by these floats, combined with the hydrographic section data and various estimates of regional current transports from moored current meter arrays, to determine the circulation of the three major subthermocline water masses in a zonal strip across the South Atlantic between the latitudes of 19°S and 30°S. We concentrate on this region because the historical literature suggests that it is where the Deep Western Boundary Current containing NADW bifurcates. In support of this notion, we find that a net of about 5 Sv. of the 15–20 Sv that crosses 19°S does continue zonally eastward at least as far as the Mid-Atlantic Ridge. Once across the ridge it takes a circuit to the north along the ridge flanks before returning to the south in the eastern half of the Angola Basin. The data suggest that the NADW then continues on into the Indian Ocean. This scheme is discussed in the context of distributions of dissolved oxygen, silicate and salinity. In spite of the many float-years of data that were collected in the region a surprising result is that their impact on the computed solutions is quite modest. Although the focus is on the NADW we also discuss the circulation for the AAIW and AABW layers.  相似文献   
77.
Reservoir pressures within the Bullwinkle minibasin (Green Canyon 65, Gulf of Mexico continental slope) increase at a hydrostatic gradient whereas pressures predicted from porosity within mudstones bounding these reservoirs increase at a lithostatic gradient: they are equal at a depth 1/3 of the way down from the crest of the structure. Two- and three-dimensional steady-state flow models demonstrate that bowl-shaped structures will have lower pressures than equivalent two-dimensional structures and that if a low permeability salt layer underlies the basin, the pressure is reduced. We conclude that at Bullwinkle, pressure is reduced due to an underlying salt body and the bowl-shape of the basin. A geometric approach to predict sandstone pressure is to assume that the reservoir pressure equals the area-weighted average of the mudstone pressure. When the mudstone pressure gradient is constant, as at Bullwinkle, the reservoir pressure equals the mudstone pressure at the average depth (centroid) of the reservoir.  相似文献   
78.
The polychaete fauna of muddy bottoms off the Rhone delta (NW Mediterranean) was seasonally sampled at two sites at 70 m depth, from 1993 to 1996. During this period, five severe flood events occurred. A clustering analysis (distance coefficient of Whittaker) and three way fixed factor ANOVAs (site x season x year) showed strong year-to-year changes in species density and community structure, changes that masked seasonal variations. Total density increased by a factor of 3 and density of most species significantly increased following the first flooding event. Changes in the community structure were due to the successive dominance of a few species. The opportunistic species, such as Cossura sp., Mediomastus sp. and Polycirrus sp., exhibited peaks in density 1-3 months after the flood. These peaks were followed by a drastic decline. For species with a long life span, such as Sternaspis scutata, a slower but continuous increase in density was observed which was maintained for several months. The density fluctuations of these species exhibited a good correlation with river flow with time lags of 1-2 years. The successional dynamics observed are explained according to the geographical origin of the floods and the biology and feeding ecology of species.  相似文献   
79.
1 .IntroductionUnder the influence of surface waves ,sandripples often appear on beaches . Whenthe amplitudeof water oscillationis sufficientlylarge ,vortices are formed onthe lee of every sand ripple crest . A-mongthese vortices ,the most important are t…  相似文献   
80.
Using a two-dimensional primitive equation model, we examine nonlinear responses of a semidiurnal tidal flow impinging on a seamount with a background Garrett-Munk-like (GM-like) internal wavefield. It is found that horizontally elongated pancake-like structures of high vertical wavenumber near-inertial current shear are created both in the near-field (the region over the slope of the seamount) and far-field (the region over the flat bottom of the ocean). An important distinction is that the high vertical wavenumber near-inertial current shear is amplified only at mid-latitudes in the far-field (owing to a parametric subharmonic instability (PSI)), whereas it is amplified both at mid-and high-latitudes (above the latitude where PSI can occur) in the near-field. In order to clarify the generating mechanism for the strong shear in the near-field, additional numerical experiments are carried out with the GM-like background internal waves removed. The experiments show that the strong shear is also created, indicating that it is not caused by the interaction between the background GM-like internal waves and the semidiurnal internal tides. One possible explanation is proposed for the amplification of high vertical wavenumber near-inertial current shear in the near-field where tide residual flow resulting from tide-topography interaction plays an important role in transferring energy from high-mode internal tides to near-inertial internal waves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号