首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   1篇
地球物理   6篇
地质学   10篇
海洋学   21篇
自然地理   1篇
  2019年   1篇
  2017年   4篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2011年   3篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1990年   2篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
21.
Oscar Barton  Jr.  Sarah Mouring 《Ocean Engineering》2007,34(11-12):1778-1780
A discussion is presented that highlights the growing utilization of composite structures for marine applications. Important to this trend is an understanding of the buckling response of marine panels under hygroscopic loads. Consideration are presented for the use of eigensensitivity analysis as a means of developing an approximate closed-form expression for computing the critical buckling response in the absense of an exact solutions  相似文献   
22.
Offshore pipelines are usually buried to avoid damage from fishing activities and to provide thermal insulation. Provided that the buried pipelines are sufficiently confined in the lateral direction by the passive resistance of the trench walls, they may be subject to vertical buckling caused by a rise in temperature. Vertical buckling is usually called upheaval buckling because the heated pipeline is assumed to move upwards conventionally. However, the seabed may be very soft, especially where a pockmark or abyssal ooze appears. Consequently, under thermal compressive force, the pipeline may buckle downward and penetrate into the seabed because the downward soil resistance is small. In this study, we extended an analytical solution for vertical pipeline buckling on a rigid seabed to a soft seabed, and the effects of soil resistance on pipeline stability, buckling mode and amplitude are illustrated and analyzed.  相似文献   
23.
Slender piles embedded in soft ground or liquefied soil may buckle under vertical load. In this paper, both small- and large-scale model tests are conducted to investigate the buckling mechanisms of a slender pile and the lateral earth pressure acting on the pile. To observe the buckling of a slender pile, the strain-controlled loading method is adopted to apply a vertical load. When the two ends of a slender pile are hinged, the buckling mechanisms of small- and large-scale model tests are same. It should be noted that this applies only to a system with a small ratio of pile bending stiffness to soil bending stiffness. An applied vertical load increases with an increasing pile head settlement until it reaches the critical buckling load. By further increasing the pile head settlement, the measured load approaches the critical buckling load. In the large-scale model test, the measured lateral earth pressure (i.e., active and passive) acting on the slender pile varies linearly with the lateral pile displacement when the measured range is 3–5?m beneath the ground. A critical buckling calculation method has been adopted to compare with the conventional “m” method. The two-sided earth pressure calculation method can achieve more approximate results with the model test.  相似文献   
24.
Naturally occurring fold systems are typically irregular. Although such systems may sometimes be approximated by a periodic geometry, in reality they are commonly aperiodic. Ord (1994) has proposed that naturally occurring fold systems may display spatial chaos in their geometry. Previous work has indicated that linear theories for the formation of fold systems, such as those developed by Biot (1965), result in strictly periodic geometries. In this paper the development of spatially chaotic geometries is explored for a thin compressed elastic layer embedded in a viscoelastic medium which shows elastic softening. In particular, it is shown that spatially localized forms of buckling can develop and the evolution of these systems in the time domain is presented. A nonlinear partial differential equation, fourth order in a spatial variable and first order in time, is found to govern the evolution. A related nonlinear fourth-order ordinary differential equation governs an initial elastic phase of folding. The latter equation belongs to a class with spatially chaotic solutions. The paper reviews the implications of localization in the geological framework, and draws some tentative conclusions about the development of spatial chaos. Crudely arrived-at, yet plausible, evolutionary time plots under the constraint of constant applied end displacement are presented. Emphasis throughout is on phenomenology, rather than underlying mathematics or numerics.  相似文献   
25.
环肋圆柱壳体在水下冲击波作用下的动力弹塑性屈曲   总被引:1,自引:0,他引:1  
本文以加肋圆柱壳体为对象建立力学模型,在水下爆炸产生的冲击波作用下,考虑流体与结构的耦合效应,研究加肋圆柱壳体的弹塑性失稳变形量及动力响应特性。数值分析显示出的最终变形形状和压力变化过程与实验资料一致的  相似文献   
26.
In seismic-prone zones with liquefiable deposit piles are routinely used to support structures (buildings/bridges). In this paper, a unified buckling and dynamic approach is taken to characterize this vibration. The pile–soil system is modelled as Euler–Bernoulli beam resting against an elastic support with axial load and a pile head mass with rotary inertia. The emphasis here is to obtain a simple expression that can be used by practicing engineers to obtain the fundamental frequency of the structure–pile–soil system. An approximate method based on an equivalent single-degree-of-freedom model has been proposed. Natural frequencies obtained from the exact analytical method are compared with approximate results. Proposed expressions are general as they are functions of non-dimensional parameters. It is shown that this simplified method captures the essential design features such as: (a) the continuous reduction of the first natural frequency of the structure–pile–soil system due to progressive reduction of soil stiffness due to liquefaction; (b) the reduction in the axial load-carrying capacity of the pile due to instability caused by liquefaction. The results derived in this paper have the potential to be directly applied in practice due to their simple yet general nature. An example problem has been taken to demonstrate the application of the method.  相似文献   
27.
The paper presents an experimental study on six circular corrugated cylinders which were tested to destruction under external hydrostatic pressure. The results obtained from these vessels, together with the results obtained from elsewhere, were used to provide a design chart. The design chart appears to be suitable for designing these vessels to guard against inelastic instability.  相似文献   
28.
纵弯叠加褶皱地区应力场研究-以川东北地区为例   总被引:7,自引:0,他引:7       下载免费PDF全文
黄继钧 《地质科学》2000,35(2):140-150
川东北地区主体构造为北西向大巴山弧形构造带和北东-北东东向川东弧形褶皱带,发育早期北东向纵弯褶皱和晚期北西向纵弯褶皱,两者构成明显的纵-纵复合叠加,形成典型的限制褶皱、横跨褶皱、斜跨褶皱和移褶等。早、晚两期褶皱和共轭“X”节理均反映出早期应力场为北西-南东向水平挤压,晚期应力场为北东-南西向挤压。  相似文献   
29.
This paper concerns the buckling analysis of three-dimensional (3D) layered continua using the Cosserat approach. The finite element method (FEM) is used to implement the adopted Cosserat formulation. As a result, the interfaces between the layers need not be explicitly modelled. Instead, the internal characteristic length, i.e., the layer thickness and also the interaction conditions between the layers are incorporated into the governing equations of the solution. This paper introduces a new 3D geometric stiffness matrix based on the principle of virtual work. The proposed geometric stiffness matrix is applied to the linear buckling analysis of a number of benchmark problems with various geometries, boundary conditions, and interaction conditions between the layers. In all cases, the FEM Cosserat solution exhibits a high level of consistency with the analytical solution.  相似文献   
30.
The paper presents a theoretical and an experimental investigation into the plastic collapse of circular steel corrugated cylinders under external hydrostatic pressure. The experimental investigation gives a detailed study of 9 steel corrugated cylinders which were tested to destruction. Six of these cylinders failed by plastic non-symmetric bifurcation buckling and three failed by plastic axisymmetric deformation. The results of these tests were used, together with the results obtained from previous tests, to present a design chart for the plastic collapse of these vessels. The design chart was obtained by a semi-empirical approach, where the thinness ratios of the vessels were plotted against their plastic knockdown factors. The process of using the design chart is to calculate the theoretical elastic instability pressure for a perfect vessel by the finite element method and also to calculate the thinness ratio for this vessel. Using the appropriate value of the thinness ratio, the plastic knockdown factors are obtained from the design chart. To obtain the actual collapse pressure of the vessel, the theoretical elastic instability pressure for a perfect vessel is divided by the plastic knockdown factor. This work is of importance in ocean engineering. A large safety factor must also be introduced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号