首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2451篇
  免费   247篇
  国内免费   396篇
测绘学   41篇
大气科学   111篇
地球物理   512篇
地质学   1408篇
海洋学   608篇
天文学   29篇
综合类   18篇
自然地理   367篇
  2024年   15篇
  2023年   25篇
  2022年   55篇
  2021年   71篇
  2020年   104篇
  2019年   99篇
  2018年   71篇
  2017年   116篇
  2016年   97篇
  2015年   116篇
  2014年   150篇
  2013年   177篇
  2012年   109篇
  2011年   153篇
  2010年   104篇
  2009年   200篇
  2008年   199篇
  2007年   167篇
  2006年   143篇
  2005年   130篇
  2004年   108篇
  2003年   80篇
  2002年   83篇
  2001年   51篇
  2000年   61篇
  1999年   57篇
  1998年   48篇
  1997年   41篇
  1996年   40篇
  1995年   24篇
  1994年   30篇
  1993年   24篇
  1992年   24篇
  1991年   16篇
  1990年   24篇
  1989年   11篇
  1988年   13篇
  1987年   13篇
  1986年   7篇
  1985年   6篇
  1984年   8篇
  1983年   8篇
  1982年   6篇
  1981年   5篇
  1980年   1篇
  1978年   3篇
  1954年   1篇
排序方式: 共有3094条查询结果,搜索用时 31 毫秒
51.
Sevim Polat 《Marine Ecology》2002,23(2):115-126
Abstract. The monthly changes in chlorophyll a , phytoplankton abundance and nutrient concentrations at two stations, one at the inshore and the other at the deep waters of the northern part of İskenderun Bay, were investigated between 1994 – 1995. The vertical distribution of nutrients and phytoplankton biomass were also studied at the deep station. The concentrations of NO3+NO2-N, PO4-P and SiO4-Si of surface water at both stations were 0.31 – 1.63 µg-at · l-1, 0.08 – 0.60 µg-at · l-1 and 0.50 – 2.7 µg-at · l-1, respectively. The highest concentrations were measured at the inshore station and clear differences were found between the inshore and deep-water stations. Chlorophyll a concentrations ranged from 0.17 to 2.78 µg · l-1 and the highest value was measured in March. At the inshore station, which was affected by land run-off, phytoplankton abundance reached the highest value (21,308 cells · l-1) in October 1995, with a marked dominance of Pseudonitzschia pungens (20,200 cells · l-1). The nutrient and chlorophyll a concentrations at the inshore station were higher than those at the deep station. One reason for this is the land-based nutrient input into the coastal area here. In spite of these effects, the bay is not eutrophicated because of circulation events in the northeastern Mediterranean.  相似文献   
52.
Abstract. Aquatina lake is a brackish basin, connected with the Adriatic Sea along the mast of Apulia (Italy), with a mean salinity of 26%. The abundance and biomass of fifteen polychaete species were recorded by monthly samples in a pilot area of the lake from February 1989 to February 1990. Naineris laevigata was dominant, both in number of individuals and biomass. During 1990, obstruction of freshwater inflow to the lake caused an increase in salinity up to 4O%, followed by some changes in the polychaete community. Noromasrus hiericeus became dominant, and the abundances of the other species decreased except for Naineris laevipru . Salinity assumed normal values after three months, but community responded slowly becauie the massive presence of N. latericeus inhibited the recovery of other species. An abiotic disturbance, followed by a biotic disturbance, altered the structure of the polychaete community.  相似文献   
53.
The aim of this paper is to study the macrofaunal community dynamics and the biological–environmental interactions in the mid- and sublittoral ecosystems of the microtidal Mediterranean sandy shores. Four sandy beaches, three on the island of Crete and one on the northwest coast of Italy were selected to investigate the spatial and temporal changes in the community structure and the associated environmental variables. The littoral zone, which has not been adequately studied in the Eastern Mediterranean, presents special interest not only from the scientific point of view but also for practical reasons of ecological management. The multivariate techniques revealed that the community pattern of the sandy beach macrofauna is mainly spatial rather than temporal. There are pronounced differences in species composition and abundance of the macrofaunal assemblages of the mid- and sublittoral zone. The multicausal environmental severity hypothesis appears to be valid for the sandy beach macrofaunal communities of the Mediterranean. The abundance and composition of the macrofaunal assemblages are highly variable and are affected by the synergistic effects of many environmental variables. The polychaete taxonomic assemblage structure closely follows the macrofaunal community pattern. Differences between the two patterns may arise from the different responses that polychaetes may show to the environmental stress.  相似文献   
54.
55.
The Bolmon lagoon (South of France) is an oligo-mesohaline coastal lagoon that has undergone intense eutrophication in the past decades, resulting from a strong concentration of human activities in its drainage basin. Consequently, it exhibits some characteristics typical of an advanced trophic state; namely, the disappearance of submerged vegetation, the permanently intense phytoplankton growth and the recurrence of cyanoprokaryote blooms. As cyanoprokaryote dominance in south-temperate saline lagoons is little reported, we carried out this study in order to understand the seasonal variations in the phytoplankton composition and biomass, and to analyse the influence of environmental parameters such as salinity, nutrients and climate on the seasonal succession of species. In this lagoon, the phytoplankton was permanently dominated by cyanoprokaryotes, probably because of high availability of nutrients, low light penetration in the water column and frequent turbulent mixing induced by wind. The two most abundant species Planktothrix agardhii (in winter–spring) and Pseudanabaena limnetica (in summer) have low light requirements and are well adapted to a high mixing frequency, which defines the S1 functional group in Reynolds' typology for phytoplankton. Although widely studied in north-temperate lakes, blooms of these typically freshwater species are almost unreported in the Mediterranean area, especially in brackish ecosystems that are not their normal habitat. In the Bolmon lagoon, all their requirements for nutrients, light and mixing are satisfied and they seem to cope with a moderate presence of salt but P. agardhii was less competitive than P. limnetica at highest salinities, the latter being probably more halophytic. Contrary to the observations in lakes located at higher latitudes, the Mediterranean climate seems to induce a typical seasonal pattern of succession characterised by the dominance of P. agardhii (winter) – Chroococcales (spring) – Pseudanabaenaceae (summer) – P. agardhii (autumn, winter). The warm temperatures seemed to have a major influence on the phytoplankton succession, being responsible for the survival of Planktothrix during winter and its rapid and intense development in early spring. Intense mixing and high irradiance in summer promoted the development of Pseudanabaenaceae, as reported in another south-temperate lagoon, the Albufera of Valencia (Spain). The ecological success of Oscillatoriales observed in the Bolmon lagoon is a perfect example of a shift to the “turbid stable state” as proposed for freshwater shallow lakes only. Our work demonstrated that hypereutrophic Mediterranean lagoons can function very similarly to shallow lakes at higher latitudes; but the warmer climate and higher irradiances are probably responsible for differences in the seasonal pattern of species dominance.  相似文献   
56.
We have sampled particles of native aluminium (Al°) in two sediment cores from the Central Indian Basin (CIB). The cores are geographically separated but are located at the base of two seamounts. The native Al° particles occurring as grains and spherules, have an average Al content of  95% and are associated with volcanogenic–hydrothermal material. Morphologically and compositionally, the specimens are similar to those reported from the East Pacific Rise. After ruling out several processes for the presence of the native Al°, we hypothesize that during progressive melting of magma, a basaltic magma is produced which has high contents of reductants such as methane and hydrogen, and a low oxygen fugacity. During the upward migration of such magma, reduction to metallic aluminium and the formation of native Al° particles takes place.  相似文献   
57.
Zooplankton samples from the eastern Mediterranean were collected in April/May 1999 with a multiple opening and closing net (mesh size 333 μm) to examine the distribution and taxonomic composition of mesozooplankton, mainly Calanoida (Copepoda), some years after the onset of the Eastern Mediterranean Transient (EMT), a climatically induced shift in hydrography. The samples from seven stations on a transect from the Ionian Sea to the eastern part of the Levantine Basin were collected at closely spaced vertical intervals from the surface to water depths of 4250 m. Data from January 1987, June 1993, January 1998 and October 2001 from the main site of investigation, south of Crete, were used to describe the temporal evolution before (1987), during (1993) and after (1998–2001) the EMT. The eastern Mediterranean mesozooplankton fauna is dominated by three Calanoida species along the west–east transect, with varying abundances in different depth‐zones: Haloptilus longicornis in the epipelagic zone, Eucalanus monachus in the mesopelagic zone, and Lucicutia longiserrata in the bathypelagic zone. A drastic change in mesozooplankton composition and abundance occurred at the main site during the EMT, whereupon increased abundances of Candacia elongata and L. longiserrata were observed in the bathypelagic zone in the following years; L. longiserrata accounted for 43% of the total mesozooplankton in this zone. The hypothesis is posed that the Mediterranean deep‐sea ecosystem is able to respond quickly to changes in the environment and memorizes these changes over time. We claim that the biological effects of climatically induced changes can be easily monitored in the deep eastern Mediterranean Sea using calanoid copepod key species due to the hydrographically extreme, but ‘simply structured’ ecosystem.  相似文献   
58.
59.
The structure and functioning of nanoplanktonic assemblages in coastal upwelling areas have usually been overlooked in explorations of the productivity of these areas. As part of a multidisciplinary, time-series station in the coastal area off Concepción, seasonal variations (upwelling and non-upwelling) in the abundance and biomass of these assemblages were investigated. Hydrographic measurements and biological samples were taken monthly over a 2-year period (18 August 2004-28 July 2006). Nanoflagellates dominated the total integrated abundance (3-317 × 109 cells m−2; 0-80 m). Diatoms and dinoflagellates usually contributed to a lesser degree (<20%) but sporadically made important contributions to the total integrated nanoplankton biomass (0.02-10.6 g C m−2). Most of the nanoplankton was concentrated in surface waters (<30 m) during all the samplings and no seasonal differences in abundance or biomass were found in this layer, although the mean values and dispersions around them were highest during the upwelling period along with maximum integrated (0-80 m) chlorophyll-a values, as total or in the <20 μm fraction. Changes in nanoplankton abundance were significantly but weakly (r < 0.4) correlated with changes in the hydrographic variables; the highest correlation values were positive for temperature and oxygen, factors that varied with depth and date. The potential grazing rates of heterotrophic nano-predators (flagellates and dinoflagellates) on prokaryotic prey, estimated with a generic model, ranged from 3 to 242 bacterioplankton predator−1 h−1 and from 0.1 to 14 cyanobacteria predator−1 h−1. Our results imply a small impact of seasonal hydrographic variability on the abundance and biomass of nanoplanktonic assemblages and suggest that grazing by nanoheterotrophs might control the prokaryotic picoplankton populations in the upwelling area off Concepción.  相似文献   
60.
Abstract. Growth of the shallow-water gorgonian Lophogorgia ceratophyta was investigated in an infralittoral station located in La Spezia Gulf, Ligurian Sea. Mean annual height growth rate was estimated to be 2.57 cm · a-1. The fractal dimension of the colonies was found to gradually evolve in complexity, exhibiting a simpler branching pattern in younger specimens. The maintenance of a low, invariable ramification complexity as an optimal choice in managing relationships between water and the colony's living tissues is also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号