首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   32篇
  国内免费   38篇
测绘学   1篇
大气科学   1篇
地球物理   10篇
地质学   15篇
海洋学   69篇
综合类   15篇
自然地理   29篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   6篇
  2016年   4篇
  2015年   9篇
  2014年   12篇
  2013年   3篇
  2012年   8篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   10篇
  2007年   14篇
  2006年   2篇
  2005年   20篇
  2004年   5篇
  2003年   11篇
  2002年   4篇
  2001年   7篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1988年   1篇
排序方式: 共有140条查询结果,搜索用时 218 毫秒
61.
对中国第四次北极科学考察在楚科奇海获取的悬浮体样品进行悬浮体及其颗粒组分特征的分析,旨在了解楚科奇海悬浮体分布、成因特征以及其沉积学意义。研究发现,楚科奇海中部悬浮体浓度最低,而在靠近白令海峡的南部海域和中北部海域,中下层海水中发现两个悬浮体浓度高值区。楚科奇海阿拉斯加沿岸和巴罗峡谷底层海水中,悬浮体浓度相对较高。扫描电镜分析结果显示,楚科奇海南部和中北部中下层海水中的悬浮体,主要以硅藻为主,但这两个海域的硅藻优势种明显不同。阿拉斯加沿岸和巴罗峡谷中的悬浮体,以生物碎屑为主。结合楚科奇海温度、盐度资料,楚科奇海南部和中北部高浓度悬浮体分别受经白令海峡夏季入侵的太平洋海水和楚科奇海冬季残留水的控制,而阿拉斯加沿岸和巴罗峡谷中下层的悬浮体,则受阿拉斯加沿岸流的控制。  相似文献   
62.
在 1 999年北极夏季期间对楚科奇海和白令海的海洋低温微生物进行了调查。在楚科奇海 ,海洋细菌和海洋真菌的检出率分别为 1 0 0 %和 >94% ,其相应的总量一般分别为 >1 0 3 cells/cm3 和 1 0 1— 1 0 3 cells/cm3 ;在大多数站位 ,海洋细菌的总量通常都高于海洋真菌的总量 ;从表层至 1 0 m或 3 0 m深层的海水区域 ,分布有丰富的海洋微生物。调查结果还显示 ,不同站位间的海洋微生物总量存在明显差异 ,海冰的融化和海水中的盐度可能是影响这一海区海洋微生物总量的重要因素。在白令海 ,海洋细菌的检出率为 1 0 0 % ,其总量一般在 1 0 2 — 1 0 3 cells/cm3 ;海洋真菌的检出率 >84% ,其总量一般也在 1 0 2 — 1 0 3 cells/cm3 。白令海不同站位间的海洋微生物总量也存在较大的差异。调查结果证实在楚科奇海和白令海的确存在大量的低温海洋微生物 ,在所研究的海洋细菌中 ,分别有 81 %的楚科奇海细菌和 88.9%的白令海细菌能够在低温条件下 (<1 0℃ )良好生长 ,而且有部分菌株能够在低温条件下分解利用淀粉或纤维素等多糖物质以满足自身生长的营养需求。这些海洋低温菌株为进一步开发利用这些海域的海洋微生物资源提供了充足的材料  相似文献   
63.
戴燕玉 《极地研究》2002,14(3):186-194
根据 1 997年 7─ 8月我国首次北极科学考察期间 ,分别在楚科奇海和白令海进行海洋综合调查的资料 ,分析了这两区毛颚类种类组成和生态类型的特征、丰度的水平分布、层状分布和昼夜垂直分布。同时还就其数量分布与某些环境因子的相关性进行初步探讨。研究表明 :( 1 )两区共记录毛颚类 7种 ,可分为 3个类群 ,在数量上 ,白令海的个体数明显高于楚科奇海 ;其平面分布的状况主要由优势种所左右 ,并且都呈现出南高北低的分布格局。 ( 2 )在楚科奇海 ,毛颚类的层状分布以 5 0─ 2 0 0m层数量较高 ,5 0 0─ 80 0m层最低。白令海毛颚类的昼夜垂直分布的趋势是 ,白天总个体数最高比值均出现在 2 0 0─ 5 0 0m层 ,而晚上─凌晨则密集于 1 0 0m以浅水域 ,尤以 0─ 5 0m层数量最高 ,表现出白天下降夜晚上升的分布规律。  相似文献   
64.
Iodine is a trace element playing an important role in vital activities of organisms. It is im-portant for human bodys thyroid gland. Deficient or excessive iodine will not only influence hu-man health but also cause feeblemindedness, so great attention h…  相似文献   
65.
于 1 999年夏季我国首次北极科学考察期间在楚科奇海采集了三个沉积物岩芯 ,并采用中子活化法 (INAA)测定了沉积物样品中稀土元素的含量。结果表明 ,其含量与东海大陆架细粒沉积物的稀土元素含量十分接近。稀土元素的含量沿沉积物岩心的垂直分布呈现出随深度轻微增大的趋势。页岩标准化的稀土元素配分模式相对平缓 ,Ce有轻度负异常 ,表明沉积物稀土元素除了陆源物质以外 ,也存在生物沉积作用的来源。稀土元素与指示陆源的元素Al具有良好的正相关关系 ,相对于地壳丰度所计算的富集因子接近于 1 ,进一步说明楚科奇海沉积物中的稀土元素以陆源物质输入为主 ,通过江河携带入海 ,最后随碎屑物质、悬浮物而沉积下来 ,并保持一种稳定的沉积状态。  相似文献   
66.
Multibeam bathymetry and 3.5-kHz sub-bottom profiler data collected from the US icebreaker Healy in 2003 provide convincing evidence for grounded ice on the Chukchi Borderland off the northern Alaskan margin, Arctic Ocean. The data show parallel, glacially induced seafloor scours, or grooves, and intervening ridges that reach widths of 1000 m (rim to rim) and as much as 40 m relief. Following previous authors, we refer to these features as “megascale glacial lineations (MSGLs).” Additional support for ice grounding is apparent from stratigraphic unconformities, interpreted to have been caused by ice-induced erosion. Most likely, the observed sea-floor features represent evidence for massive ice-shelf grounding. The general ESE/WNW direction of the MSGLs, together with sediment, evidently bulldozed off the Chukchi Plateau, that is mapped on the western (Siberian) side of the plateau, suggests ice flow from the Canada Basin side of Chukchi Borderland. Two separate generations of glacially derived MSGLs are identified on the Chukchi Borderland from the Healy geophysical data. The deepest and oldest extensive MSGLs appear to be draped by sediments less than 5 m thick, whereas no sediment drape can be distinguished within the resolution of the sub-bottom profiles on the younger generation.  相似文献   
67.
The global warming has obviously been causingthe Arctic sea ice shrinking and thinning during thelast 30 years, which would increase free ice waters andenhance biological productivity. These changes willimpact the source and sink of carbon in the ArcticOcean and subarctic waters as well as a feedback tothe global change[1—3]. The Chukchi Sea is located in the southwest ofthe western Arctic Ocean and the Bering Sea in thenorthwest of the North Pacific Ocean. Both seas are 1997—2001) and…  相似文献   
68.
梁敏仪  史久新 《极地研究》2015,27(4):379-391
利用2003—2011年AMSR-E(Advanced Microwave Scanning Radiometer-Earth Observing System)日平均海冰密集度数据,对楚科奇海阿拉斯加沿岸冰间湖进行了分析。针对冰间湖的特点,在阈值法的基础上,通过统计冰间湖出现的频率,限定冰间湖的最大范围,区分各个冰间湖。通过计算阿拉斯加沿岸冰间湖的面积,结合NCEP-DOE(National Centers for Environmental Prediction-Department of Energy)再分析风场数据和白令海峡潜标观测的温盐和海流数据,初步探讨冰间湖发生和发展的规律。为了排除海冰外缘区对判断冰间湖的影响,研究仅限于白令海峡完全冰封的1—4月,可得到以下结论:阿拉斯加西北沿岸海域每年冬季都会出现5个冰间湖,多数时间为紧靠大陆边缘的沿岸冰间湖,巴罗角附近海岸在3月和4月会出现位于沿岸固定冰之外的裂缝冰间湖。冰间湖面积每天都发生变化,表现出天气尺度的变化特征,经历长达数日的发展和消失的过程,与风场的转换有密切关系。离岸风有利于沿岸冰间湖的扩展,但是该海域1—4月的盛行风为东北风和北风,对于多数冰间湖而言为沿岸风,不利于冰间湖的形成,因而冰间湖有时消失长达数十日。在偏北风的影响下,太平洋入流对北部冰间湖几无作用,而对南部冰间湖的空间分布有着重要影响。  相似文献   
69.
Characteristics of the pCO2 distribution in surface water of the Bering Abyssal Plain and their relationships with the ambient hydrological conditions were discussed using variations of the partial pressure of CO2 in surface water of the Bering Abyssal Plain and the Chukchi Sea. Data in this study are from a field investigation during the First Chinese National Arctic Research Expedition in 1999. Compared to the high productivity in the Bering Continental Shelf, much lower levels of chlorophyll a were observed in the Bering Abyssal Plain. The effect of hydrological factors on the pCO2 distribution in surface seawater of the Plain in summer has become a major driving force and dominated over biological factors. The Plain also presents a High Nutrient Low Chlorophyll (HNLC). In addition, the pCO2 distribution in the Bering Abyssal Plain has also been found to be influenced from the Bering Slope Current which would transform to the Anadyr Current when it inflows northwestward over the Plain. The Anadyr Current would bring a high nutrient water to the western Arctic Ocean where local nutrients are almost depleted in the surface water during the summer time. Resupplying nutrients would stimulate the growth of phytoplankton and enhance capacity of absorbing atmospheric CO2 in the surface water. Otherwise, in the Bering Sea the dissolved inorganic carbon brought from freshwater are not deposited down to the deep sea water but most of them would be transported into the western Arctic Ocean by the Alaska Coastal Current to form a carbon sink there. Therefore, the two carbon sinks in the western Arctic Ocean, one carried by the Anadyr Current and another by the Alaska Costal Current, will implicate the western Arctic Ocean in global change.  相似文献   
70.
Year-long time-series of temperature, salinity and velocity from 12 locations throughout the Chukchi Sea from September 1990 to October 1991 document physical transformations and significant seasonal changes in the throughflow from the Pacific to the Arctic Ocean for one year. In most of the Chukchi, the flow field responds rapidly to the local wind, with high spatial coherence over the basin scale—effectively the ocean takes on the lengthscales of the wind forcing. Although weekly transport variability is very large (ca. -2 to ), the mean flow is northwards, opposed by the mean wind (which is southward), but presumably forced by a sea-level slope between the Pacific and the Arctic, which these data suggest may have significant variability on long (order a year) timescales. The high flow variability yields a significant range of residence times for waters in the Chukchi (i.e. one to six months for half the transit) with the larger values applicable in winter.Temperature and salinity (TS) records show a strong annual cycle of freezing, salinization, freshening and warming, with sizable interannual variability. The largest seasonal variability is seen in the east, where warm, fresh waters escape from the buoyant, coastally trapped Alaskan Coastal Current into the interior Chukchi. In the west, the seasonally present Siberian Coastal Current provides a source of cold, fresh waters and a flow field less linked to the local wind. Cold, dense polynya waters are observed near Cape Lisburne and occasional upwelling events bring lower Arctic Ocean halocline waters to the head of Barrow Canyon. For about half the year, at least at depth, the entire Chukchi is condensed into a small region of TS-space at the freezing temperature, suggesting ventilation occurs to near-bottom, driven by cooling and brine rejection in autumn/winter and by storm-mixing all year.In 1990–1991, the ca. 0.8 Sv annual mean inflow through Bering Strait exits the Chukchi in four outflows—via Long Strait, Herald Valley, the Central Channel, and Barrow Canyon—each outflow being comparable (order 0.1–0.3 Sv) and showing significant changes in volume and water properties (and hence equilibrium depth in the Arctic Ocean) throughout the year. The clearest seasonal cycle in properties and flow is in Herald Valley, where the outflow is only weakly related to the local wind. In this one year, the outflows ventilate above and below (but not in) the Arctic halocline mode of 33.1 psu. A volumetric comparison with Bering Strait indicates significant cooling during transit through the Chukchi, but remarkably little change in salinity, at least in the denser waters. This suggests that, with the exception of (in this year small) polynya events, the salinity cycle in the Chukchi can be considered as being set by the input through Bering Strait and thus, since density is dominated by salinity at these temperatures, Bering Strait salinities are a reasonable predictor of ventilation of the Arctic Ocean.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号