首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   20篇
  国内免费   39篇
测绘学   3篇
大气科学   3篇
地球物理   27篇
地质学   108篇
海洋学   7篇
天文学   8篇
综合类   6篇
自然地理   2篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   1篇
  2015年   3篇
  2014年   11篇
  2013年   12篇
  2012年   8篇
  2011年   7篇
  2010年   4篇
  2009年   9篇
  2008年   9篇
  2007年   5篇
  2006年   16篇
  2005年   6篇
  2004年   5篇
  2003年   2篇
  2002年   5篇
  2001年   5篇
  2000年   4篇
  1999年   2篇
  1998年   6篇
  1997年   2篇
  1996年   5篇
  1995年   4篇
  1994年   2篇
  1993年   8篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1977年   1篇
排序方式: 共有164条查询结果,搜索用时 15 毫秒
151.
We used the local seismicity for the period of 1993 to 2001, in the northeast of Colombia to show the existence of two slabs in the north and south of the Bucaramanga nest. The northern slab has a dip angle of about 25° and the southern slab has a 50° dip angle, while the dip in the Bucaramanga nest is about 29°. In order to explain the nature of the Bucaramanga nest, we proposed the scenario of collision between these two slabs. Using a 3D Finite Element Model (FEM) we show that collision can concentrate, modify and perturb the stress field. The active process of dehydration embrittlement at intermediate depths and the concentrated stress field in the collision zone may explain the high rate of seismic activity inside the Bucaramanga nest. The perturbed and modified stress field resulting from the simultaneous effect of collision between two subducted slabs and subduction of the lithosphere under its own weight can explain the variation in the focal mechanism of micro-earthquakes and the complexity in the source of the moderate size earthquakes in the Bucaramanga nest.  相似文献   
152.
The Miocene Kofu Granitic Complex (KGC) occurs in the Izu CollisionZone where the Izu–Bonin–Mariana (IBM) arc has beencolliding with the Honshu arc since the middle Miocene. TheKGC includes rocks ranging in compositions from biotite-bearinggranite (the Shosenkyo and Mizugaki plutons), and hornblende–biotite-bearinggranodiorite, tonalite, quartz-diorite, and granite (the Shiodaira,Sanpo, Hirose and Sasago plutons), to hornblende-bearing tonaliteand trondhjemite (the Ashigawa–Tonogi pluton), indicatingthat it was constructed from multiple intrusions of magma withdifferent bulk chemistry. The Sr-isotopic compositions correctedto sensitive high-resolution ion microprobe (SHRIMP) zirconages (SrI) suggest that the primary magmas of each pluton wereformed by anatexis of mixed lower crustal sources involvingboth juvenile basalt of the IBM arc and Shimanto sedimentaryrocks of the Honshu arc. After the primary magmas had formed,the individual plutons evolved by crystal fractionation processeswithout significant crustal assimilation or additional mantlecontribution. SHRIMP zircon U–Pb ages in the KGC rangefrom 16·8 to 10·6 Ma and overlap the resumptionof magmatic activity in the IBM and Honshu arcs at c. 17 Maand the onset of IBM arc–Honshu arc collision at c. 15Ma. The age of the granite plutons is closely related to theepisodic activity of arc magmatism and distinct granitic magmabatches could be formed by lower crustal anatexis induced byintrusion of underplated mantle-derived arc magmas. Based onpressures determined with the Al-in-hornblende geobarometer,the KGC magmas intruded into the middle crust. Thus, the KGCcould represent an example of the middle-crust layer indicatedthroughout the IBM arc by 6·0–6·5 km/s seismicvelocities. This granitic middle-crust layer acted buoyantlyduring the IBM arc–Honshu arc collision, leading to accretionof buoyant IBM arc middle crust to the Honshu arc. KEY WORDS: arc–arc collision; crustal anatexis; granite; Izu–Bonin–Mariana (IBM) arc; Izu Collision Zone  相似文献   
153.
The Southern Granulite Terrain with exposed Archean lower crustal rocks is studied using various geophysical tools. The crustal structure derived from seismic reflection and refraction/wide-angle reflection studies is used to understand the tectonic evolution of the region. Deep seismic reflection section along the Kolattur–Palani segment shows an oppositely dipping reflection fabric near the Moyar–Bhavani shear zone, which is interpreted as a signature of collision between the Dharwar craton and another crustal block in the south. The thickened crust due to collision was delaminated during the orogenic collapse and modified the central part, covering the Cauvery Shear Zone system, located between the Moyar–Bhavani and Karur–Oddanchatram shear zones. The delaminated lower crust is altered by magmatic underplating as evidenced by the high velocity layer just above the Moho. The velocity model of the region indicates crustal thickening at the boundary of the Dharwar craton and Moyar–Bhavani shear zone and thinning further south. Back-scattered seismic wave field with negative moveout and the Moho-offset indicate the spatial location and strike-slip nature of the shear zones. Present study suggests that the late Archean collision and suturing of the Dharwar craton with the southern crustal block at the Moyar–Bhavani shear zone may be responsible for the evolution of late Archean granulites. Late Neoproterozoic rifting is observed along the paleo-fault zones. The seismic studies constrained by gravity, magnetic and magnetotelluric data suggest that the Moyar–Bhavani and Karur–Oddanchatram shear zones of the Cauvery Shear Zone system mark terrane boundaries/suture zones.  相似文献   
154.
The Odesan area in the eastern Gyeonggi Massif, South Korea, consists principally of migmatitic and porphyroblastic gneisses intruded by mangerite. Mafic mangerites with SiO2 contents from 52.40 to 54.20 wt.% have higher FeO* + MgO (14.98–18.28 wt.%) and CaO contents (5.80–7.84 wt.%) but lower total alkali contents (4.74 < Na2O + K2O < 5.80 wt.%) than felsic mangerites (55.9 < SiO2 < 60.61 wt.%, 9.51< FeO* + MgO < 11.62 wt.%, 3.28 < CaO < 5.68 wt.%, 6.72 < Na2O + K2O < 8.05 wt.%). Fe-numbers (FeO* / [MgO + FeO*]) are 0.44–0.47 for mafic mangerites and 0.38–0.42 for felsic mangerites. The mangerites show calc-alkaline affinities in an AFM plot and resemble high-Ba–Sr granitoids with low Rb / Sr ratios of 0.25–0.10. Their MORB-normalized compositions show enrichment in LILE (decoupled LIL/HFS pattern) and negative anomalies in Ti–Nb–Ta. Their geochemical characters are consistent with their formation by partial melting of a basaltic source at temperatures higher than 1025 °C. The mangerites of the present study differ from mangerite formed in a typical within-plate tectonic setting in their high mg# and Sr concentrations and negative Nb and Ta anomalies. Their LILE enrichment and negative Ti–Nb–Ta anomalies could well have been inherited from a pre-collision subduction event. A mean U–Pb zircon age of 257 Ma for the mangerite demonstrates that the tectonic belt connecting the Hongseong and Odesan areas represents a probable extension of the late Permian–Triassic collision belt between the North China and South China blocks into South Korea, with collision occurred earlier in South Korea.  相似文献   
155.
156.
Partial reflection differential absorption and differential phase observations have been used to systematically study collision frequencies (ν) in D-region of the lower ionosphere. The observations made with the large MF radar located at Buckland Park (35°S, 138°E) near Adelaide in the period September 1996–December 2000 show ν values larger than predicted by previously used models. The new estimates are compared with values calculated using new collision frequency momentum cross-sections for N2(σ) measured in the laboratory. The two types of measurements are found to be in good agreement, with a moderate seasonal variation of ν at a constant height. No change due to solar cycle variations is found.  相似文献   
157.
近海固定平台碰撞的准静态分析   总被引:5,自引:1,他引:5  
本文采用增量有限元方法结合极限分析的概念,研究近海固定平台碰撞的静力强度。文中综合考虑了平台结构在碰撞加载过程中的大变形和塑性变形特性,建立了以广义应力表达的圆管截面的屈服条件,采用塑性节点法(PNM)推导得到了单元的弹塑性矩阵。文中也考虑了梁柱单元的屈曲情况。本文所采用的载荷增量法结合牛顿—拉夫逊迭代,可跟踪加载过程中平台结构上塑性铰的出现,并最终获得平台结构的极限承载能力。  相似文献   
158.
柴达木盆地东缘早古生代弯山构造   总被引:1,自引:1,他引:0  
位于中国中央造山带内部的柴达木盆地周缘出露有代表原特提斯洋盆的蛇绿岩带、指示大洋俯冲与大陆深俯冲的高压-超高压变质带以及不同性质的早古生代花岗岩带。根据这些构造单元的空间展布形态及其综合地质年龄分布,表现为一条环绕柴达木盆地东缘的连续而弯曲的加里东期造山带。造山带内发育一系列右行走滑断裂和韧性剪切带,与古地磁资料所揭示的柴达木地块在早古生代的相对逆时针旋转息息相关。本文提出,柴达木盆地周缘造山带为一弯山构造。它是在原特提斯洋向南斜向俯冲闭合过程中,诱发的大型走滑断裂和柴达木地块逆时针旋转牵引造山带发生弯曲所致。  相似文献   
159.
塔里木盆地东南缘早古生代弯山构造   总被引:1,自引:1,他引:0  
位于塔里木盆地东南缘的阿尔金地区发育南、北两条早古生代缝合带,通过对带内出露的大量早古生代蛇绿岩、高压-超高压变质岩以及不同性质的花岗岩的同位素年代学资料的收集、整理和对比,发现南、北缝合带内岩体在岩石学、地球化学、形成的时代和构造环境等方面具有可对比性,推测在早古生代两者处于同一个俯冲带体系中,只是演化时限存在沿走向的穿时性。本文提出,阿尔金造山带为一弯山构造,我们称之为塔里木盆地东南缘早古生代弯山构造。通过古地磁资料与板块重建的研究与分析,揭示了塔里木-柴达木陆块在早古生代很可能作为一个整体漂移,发生了以逆时针方向为主的相对旋转,这与弯山构造的形成息息相关。在原特提斯洋向南斜向俯冲闭合过程中,分布在大洋中的塔里木-柴达木陆块、中阿尔金-中祁连微陆块以及其他亲冈瓦纳古陆的微陆块组成的链状陆块群,形成了近直线型的俯冲造山带。在斜向俯冲-碰撞机制下,塔里木-柴达木陆块的逆时针旋转,诱发了大型韧性剪切带和右行走滑断裂带,加之微陆块间的俯冲-碰撞相互作用的影响,最终导致初始造山带发生弯曲。塔里木盆地内发育的早古生代构造不整合以及呈"S"形展布的古构造、油气藏分布形态恰好为其提供了佐证。对塔里木盆地东南缘早古生代弯山构造的研究,不仅有助于增进对原特提斯洋俯冲、闭合的理解和认识,还可以为建立中央造山带的演化模式提供新的思路。  相似文献   
160.
Twenty sites were drilled in the late Cretaceous Shexing Formation for palaeomagnetic studies in the Lhasa terrane near the locality of Maxiang (29.9°N/90.7°E). The stepwise thermal demagnetizations successfully isolated high unblocking temperature characteristic directions. The tilt-corrected mean direction is D/I = 350.8°/32.1° with α95 = 8.1° and N = 20 sites, corresponding to a paleopole at 75.0°N, 306.7°E with A95 = 6.8°. Positive fold tests indicate a primary origin for the characteristic remanence. Based on previous Cretaceous data mainly from the Takena Formation and Paleocene data from the Linzizong volcanic rocks near the city of Lhasa, the latitude of the southern margin of Asia is located at about 15°N, and yields a stable position of the Lhasa terrane during Cretaceous and Paleocene. Compared with expected paleomagnetic directions from the stable India and Eurasia blocks, the collision palaeolatitude further implies the total latitudinal convergence was accommodated by 1700 ± 800 km (16.2 ± 7.6°) between southern Tibet and stable Eurasia and 1500 ± 830 km (14.4 ± 7.9°) between southern Tibet and stable India since the collision of India and Eurasia. A collision age between c. 54 and 47 Ma was determined using the results for the southern margin of Eurasia according to our new data and the extent of ‘Greater India’.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号