首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   865篇
  免费   92篇
  国内免费   152篇
测绘学   17篇
大气科学   58篇
地球物理   197篇
地质学   103篇
海洋学   630篇
天文学   11篇
综合类   64篇
自然地理   29篇
  2024年   1篇
  2023年   9篇
  2022年   24篇
  2021年   32篇
  2020年   33篇
  2019年   27篇
  2018年   22篇
  2017年   43篇
  2016年   38篇
  2015年   37篇
  2014年   51篇
  2013年   56篇
  2012年   38篇
  2011年   58篇
  2010年   39篇
  2009年   54篇
  2008年   57篇
  2007年   61篇
  2006年   49篇
  2005年   50篇
  2004年   34篇
  2003年   27篇
  2002年   36篇
  2001年   32篇
  2000年   26篇
  1999年   29篇
  1998年   27篇
  1997年   23篇
  1996年   16篇
  1995年   17篇
  1994年   17篇
  1993年   10篇
  1992年   7篇
  1991年   4篇
  1990年   5篇
  1989年   10篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1981年   1篇
  1978年   1篇
排序方式: 共有1109条查询结果,搜索用时 15 毫秒
11.
三维斜压模式对冬季南海环流的数值计算   总被引:7,自引:0,他引:7  
用一个三维、自由表面、原始方程模式对南海环流进行了计算.计算结果表明:黑潮在巴士海峡以西呈一反气旋弯曲流动路径,有一相对高温高盐的水舌从巴士海峡伸入南海,表明有部分黑潮水侵入南海.冬季南海的一些观测事实在模式结果里得到了很好的反映,像冬季逆风向东北方向流动的“南海暖流”和一些中尺度涡旋.同时还分析了巴士海峡沿120.75°E断面的流速和盐度的垂直结构,并同观测结果进行了比较.根据模式结果,我们还进一步讨论了“南海暖流”的形成和驱动机制.  相似文献   
12.
依据黄、东海环流的的动力学模型 ,运用“流速分解法”对黄、东海正压环流进行了数值模拟。计算结果表明冬季黄海正压环流主要受风应力影响 ,基本形态为黄海暖流由济州岛西南进入南黄海中部 ,其东西两侧分别为两支向南流动的沿岸流 ;夏季主要受到潮致体力的影响 ,为一逆时针涡旋。东海环流主要是边界力作用驱动的结果 ,东海黑潮、台湾暖流和对马暖流较稳定。冬季风应力对东海环流表层流场有消弱作用 ,在夏季则有一定增强作用。  相似文献   
13.
应用边界拟合坐标系统,解决了闽江河口河道曲折汊道多造成的计算方向与河底走向交角过大的难点;针对闽江河口长宽比相差较大的特点,移植了通常用于河道计算的沿纵向求解大尺度矩阵问题转化为沿横向小尺度矩阵求逆的水流方程求解方法,采用全隐差分格式,使闽江口数模网格步长最小控制在50m左右,时步长达3min,潮位、流场与实测拟合良好。  相似文献   
14.
Juan  Tarazona  Wolf E.  Arntz Elba  Canahuire 《Marine Ecology》1996,17(1-3):425-446
Abstract. Monthly changes in the community structure of hypoxic soft-bottom macrobenthos have been studied at a station at 34 m depth in Ancón Bay (Peru) before and during two El Niño (EN) events. Of these events, 1982-83 is considered the strongest, and 1991–93 one of the most prolonged in the 20th century. On the oceanographic scale, EN 1982–83 ranges as "very strong", whereas EN 1991–93 ranges as "moderate".
The thermal anomalies at the station during EN 1982–83 (+ 7.8 °C) were almost twice those of EN 1991–93 (+ 4.1 °C). However, the community changes were not in all cases proportional to the extent of warming. Species numbers increased in a similar way (up to 24 species from near zero in each of the two events), but maximum faunal density was five times higher, and mean biomass was twice as high in 1982–83 compared with the event a decade later. Species diversity was slightly higher during EN 1982–83, whereas successional and trophic changes occurred on a broader scale during EN 1991–93. On the whole, the impact of the long-lasting event on the small soft-bottom macrofauna was not much weaker than that of the exceptionally strong event.
The authors discuss the mechanisms which may be responsible for the differences and similarities encountered in the benthic community dynamics during these two events. Both in the unusually strong and the unusually long EN, the community revealed a pattern of early biological response several months ahead of the onset of local warming which marks the official begin of EN. The question is addressed to what extent the increase of certain parameters in the benthic community could be used for predictive purposes.  相似文献   
15.
对称式布置锚链系统的线性化处理   总被引:6,自引:2,他引:6  
用悬链线方程求解了不同锚链状态的锚链力 ,并用多项式回归了锚链力与锚固点位移的关系 ,由此求得锚链恢复力刚度系数。分析了对称式布置锚链系统的非线性程度 ,阐述对称式布置锚链系统所提供的恢复力作线性化处理的可行性及方法 ,并给出了对称布置锚链系统的线性刚度矩阵。为各类受对称式布置锚链系统约束的浮动结构物的动力分析提供了理论依据  相似文献   
16.
The Formation and Circulation of the Intermediate Water in the Japan Sea   总被引:1,自引:0,他引:1  
In order to clarify the formation and circulation of the Japan/East Sea Intermediate Water (JESIW) and the Upper portion of the Japan Sea Proper Water (UJSPW), numerical experiments have been carried out using a 3-D ocean circulation model. The UJSPW is formed in the region southeast off Vladivostok between 41°N and 42°N west of 136°E. Taking the coastal orography near Vladivostok into account, the formation of the UJSPW results from the deep water convection in winter which is generated by the orchestration of fresh water supplied from the Amur River and saline water from the Tsushima Warm Current under very cold conditions. The UJSPW formed is advected by the current at depth near the bottom of the convection and penetrates into the layer below the JESIW. The origin of the JESIW is the low salinity coastal water along the Russian coast originated by the fresh water from the Amur River. The coastal low salinity water is advected by the current system in the northwestern Japan Sea and penetrates into the subsurface below the Tsushima Warm Current region forming a subsurface salinity minimum layer. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
17.
We have examined wind-induced circulation in the Sea of Okhotsk using a barotropic model that contains realistic topography with a resolution of 9.25 km. The monthly wind stress field calculated from daily European Centre for Medium-Range Weather Forecasting (ECMWF) Re-Analysis data is used as the forcing, and the integration is carried out for 20 days until the circulation attains an almost steady state. In the case of November (a representative for the winter season from October to March), southward currents of velocity 0.1–0.3 m s−1 occur along the bottom contours off the east of Sakhalin Island. The currents are mostly confined to the shelf (shallower than 200 m) and extend as far south as the Hokkaido coast. In the July case (a representative for the summer season from April to September), significant currents do not occur, even in the shallow shelves. The simulated southward current over the east Sakhalin shelf appears to correspond to the near-shore branch of the East Sakhalin Current (ESC), which was observed with the surface drifters. These seasonal variations simulated in our experiments are consistent with the observations of the ESC. Dynamically, the simulated ESC is interpreted as the arrested topographic wave (ATW), which is the coastally trapped flow driven by steady alongshore wind stress. The volume transport of the simulated ESC over the shelf reaches about 1.0 Sv (1 Sv = 106 m3s−1) in the winter season, which is determined by the integrated onshore Ekman transport in the direction from which shelf waves propagate. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
18.
冬至初春黄海暖流的路径和起源   总被引:18,自引:0,他引:18  
主要根据近几年来中韩黄海水循环动力学合作调查结果,结合有关观测资料,进一步分析了冬至初春黄海暖流的路径和起源.与以往类似研究不同的主要有两点:(1)初步探讨了黄海暖流路径的季节和年际变异,并指出这种变异与北向风的强弱密切相关;(2)通过分析济州岛西侧海域混合水的去向,进一步确认了部分混合水绕济州岛运行,并进入济州海峡这一事实.同时,初步揭示进入黄海的混合水,即黄海暖流水,含有更多的东海陆架水成分.  相似文献   
19.
Zooplankton sampling at Station 18 off Concepción (36°30′S and 73°07′W), on an average frequency of 30 days (August 2002 to December 2005), allowed the assessment of seasonal and inter-annual variation in zooplankton biomass, its C and N content, and the community structure in relation to upwelling variability. Copepods contributed 79% of the total zooplankton community and were mostly represented by Paracalanus parvus, Oithona similis, Oithona nana, Calanus chilensis, and Rhincalanus nasutus. Other copepod species, euphausiids (mainly Euphausia mucronata), gelatinous zooplankton, and crustacean larvae comprised the rest of the community. Changes in the depth of the upper boundary of the oxygen minimum zone indicated the strongly seasonal upwelling pattern. The bulk of zooplankton biomass and total copepod abundance were both strongly and positively associated with a shallow (<20 m) oxygen minimum zone; these values increased in spring/summer, when upwelling prevailed. Gelatinous zooplankton showed positive abundance anomalies in the spring and winter, whereas euphausiids had no seasonal pattern and a positive anomaly in the fall. The C content and the C/N ratio of zooplankton biomass significantly increased during the spring when chlorophyll-a was high (>5 mg m−3). No major changes in zooplankton biomass and species were found from one year to the next. We concluded that upwelling is the key process modulating variability in zooplankton biomass and its community structure in this zone. The spring/summer increase in zooplankton may be largely the result of the aggregation of dominant copepods within the upwelling region; these may reproduce throughout the year, increasing their C content and C/N ratios given high diatom concentrations.  相似文献   
20.
Hydrographic data and composite current velocity data (ADCP and GEK) were used to examine the seasonal variations of upper-ocean flow in the southern sea area of Hokkaido, which includes the “off-Doto” and “Hidaka Bay” areas separated by Cape Erimo. During the heating season (April–September), the outflow of the Tsugaru Warm Current (TWC) from the Tsugaru Strait first extends north-eastward, and then one branch of TWC turns to the west along the shelf slope after it approaches the Hidaka Shelf. The main flow of TWC evolves continuously, extending eastward as far as the area off Cape Erimo. In the late cooling season (January–March), part of the Oyashio enters Hidaka Bay along the shallower part of the shelf slope through the area off Cape Erimo, replacing almost all of the TWC water, and hence the TWC devolves. It is suggested that the bottom-controlled barotropic flow of the Oyashio, which may be caused by the small density difference between the Oyashio and the TWC waters and the southward migration of main front of TWC, permits the Oyashio water to intrude along the Hidaka shelf slope.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号