首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   14篇
  国内免费   14篇
测绘学   4篇
大气科学   1篇
地球物理   77篇
地质学   12篇
海洋学   50篇
综合类   10篇
自然地理   14篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   5篇
  2018年   4篇
  2017年   4篇
  2016年   4篇
  2015年   4篇
  2014年   4篇
  2013年   11篇
  2012年   9篇
  2011年   8篇
  2010年   2篇
  2009年   8篇
  2008年   13篇
  2007年   9篇
  2006年   5篇
  2005年   14篇
  2004年   5篇
  2003年   7篇
  2002年   10篇
  2001年   4篇
  1999年   9篇
  1998年   3篇
  1997年   11篇
  1996年   3篇
  1995年   2篇
  1992年   2篇
  1990年   1篇
  1987年   1篇
  1982年   1篇
排序方式: 共有168条查询结果,搜索用时 31 毫秒
61.
We outline the development of a simple, coupled hydrology–biogeochemistry model for simulating stream discharge and dissolved organic carbon (DOC) dynamics in data sparse, permafrost‐influenced catchments with large stores of soil organic carbon. The model incorporates the influence of active layer dynamics and slope aspect on hydrological flowpaths and resulting DOC mobilization. Calibration and evaluation of the model was undertaken using observations from Granger Basin within the Wolf Creek research basin, Yukon, northern Canada. Results show that the model was able to capture the dominant hydrological response and DOC dynamics of the catchment reasonably well. Simulated DOC was highly correlated with observed DOC (r2 = 0.65) for the study period. During the snowmelt period, the model adequately captured the observed dynamics, with simulations generally reflecting the timing and magnitude of the observed DOC and stream discharge. The model was less successful over the later summer period although this partly reflected a lack of DOC observations for calibration. The developed model offers a valuable framework for investigating the interactions between hydrological and DOC processes in these highly dynamic systems, where data acquisition is often very difficult. © 2015 The Authors Hydrological Processes Published by John Wiley & Sons, Ltd.  相似文献   
62.
Arctic glaciers are rapidly responding to global warming by releasing organic carbon (OC) to downstream ecosystems. The glacier surface is arguably the most biologically active and biodiverse glacial habitat and therefore the site of important OC transformation and storage, although rates and magnitudes are poorly constrained. In this paper, we present measurements of OC fluxes associated with atmospheric deposition, ice melt, biological growth, fluvial transport and storage (in superimposed ice and cryoconite debris) for a supraglacial catchment on Foxfonna glacier, Svalbard (Norway), across two consecutive years. We found that in general atmospheric OC input (averaging 0.63 ± 0.25 Mg a-1 total organic carbon, i.e. TOC, and 0.40 ± 0.22 Mg a-1 dissolved organic carbon, i.e. DOC) exceeded fluvial OC export (0.46 ± 0.04 Mg a-1 TOC and 0.36 ± 0.03 Mg a-1 DOC). Early in the summer, OC was mobilised in snowmelt but its release was delayed by temporary storage in superimposed ice on the glacier surface. This delayed the export of 28.5% of the TOC in runoff. Biological production in cryoconite deposits was a negligible potential source of OC to runoff, while englacial ice melt was far more important on account of the glacier's negative ice mass balance (–0.89 and –0.42 m a-1 in 2011 and 2012, respectively). However, construction of a detailed OC budget using these fluxes shows an excess of inputs over outputs, resulting in a net retention of OC on the glacier surface at a rate that would require c. 3 years to account for the OC stored as cryoconite debris. © 2018 John Wiley & Sons, Ltd.  相似文献   
63.
The characterization of refractory organic substances (ROS) is very complicated because of their heterogeneous structure. Size-exclusion chromatography with continuous detection of dissolved nitrogen (LC-DN), dissolved organic carbon (LC-DOC), and UV-absorbance (LC-UV) is a very useful analytical tool for the characterization of changes of ROS in natural aquatic systems and in technological treatment. The effect of natural, oxidative, and biochemical processes on formation and removal of ROS is described. Additionally the role of hydrolysable carbohydrates in the composition of ROS is presented.  相似文献   
64.
Factors Influencing the Release of DOC and AOX out of Former Wastewater Infiltration Soils The influence of soil and of infiltration water quality on the release of dissolved organic carbon (DOC) and adsorbable organic halogens (AOX) from two former wastewater infiltration sites was investigated in laboratory column studies. Desorption was the most important factor influencing release processes. It depends on the amount of sorbent and sorbate and the strength of binding. Therefore, for constant irrigation rates a higher soil organic carbon content coincided with higher DOC-contents of the column effluent, while the irrigation water quality was of minor importance. Within one system the dependencies of AOX release and DOC mobilization were found to be similar. Transferring these dependencies on other systems has its limitations because of a different binding quality between sorbent and sorbate.  相似文献   
65.
The relationship between stream water DOC concentrations and soil organic C pools was investigated at a range of spatial scales in subcatchments of the River Dee system in north‐east Scotland. Catchment percentage peat cover and soil C pools, calculated using local, national and international soils databases, were related to mean DOC concentrations in streams draining small‐ (<5 km2), medium‐ (12–38 km2) and large‐scale (56–150 km2) catchments. The results show that, whilst soil C pool is a good predictor of stream water DOC concentration at all three scales, the strongest relationships were found in the small‐scale catchments. In addition, in both the small‐ and large‐scale catchments, percentage peat cover was as a good predictor of stream water DOC concentration as catchment soil C pool. The data also showed that, for a given soil C pool, streams draining lowland (<700 m) catchments had higher DOC concentrations than those draining upland (>700 m) catchments, suggesting that disturbance and land use may have a small effect on DOC concentration. Our results therefore suggest that the relationship between stream water DOC concentration and catchment soil C pools exists at a range of spatial scales and this relationship appears to be sufficiently robust to be used to predict the effects of changes in catchment soil C storage on stream water DOC concentration. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
66.
The spatial distribution of source areas and associated residence times of water in the catchment are significant factors controlling the annual cycles of dissolved organic carbon (DOC) concentration in Deer Creek (Summit County, Colorado). During spring snowmelt (April–August 1992), stream DOC concentrations increased with the rising limb of the hydrograph, peaked before maximum discharge, then declined rapidly as melting continued. We investigated catchment sources of DOC to streamflow, measuring DOC in tension lysimeters, groundwater wells, snow and streamflow. Lysimeter data indicate that near-surface soil horizons are a primary contributor of DOC to streamflow during spring snowmelt. Concentrations of DOC in the lysimeters decrease rapidly during the melt period, supporting the hypothesis that hydrological flushing of catchment soils is the primary mechanism affecting the temporal variation of DOC in Deer Creek. Time constants of DOC flushing, characterizing the exponential decay of DOC concentration in the upper soil horizon, ranged from 10 to 30 days for the 10 lysimeter sites. Differences in the rate of flushing are influenced by topographical position, with near-stream riparian soils flushed more quickly than soils located further upslope. Variation in the amount of distribution of accumulated snow, and asynchronous melting of the snowpack across the landscape, staggered the onset of the spring flush throughout the catchment, prolonging the period of increased concentrations of DOC in the stream. Streamflow integrates the catchment-scale flushing responses, yielding a time constant associated with the recession of DOC in the stream channel (84 days) that is significantly longer than the time constants observed for particular locations in the upper soil. © 1997 John Wiley & Sons, Ltd.  相似文献   
67.
This study involved a baseline evaluation of fluvial carbon export and degas rates in three nested rural catchments (1 to 80 km2) in Taboão, a representative experimental catchment of the Upper Uruguay River Basin. Analyses of the carbon content in stream waters and the catchment carbon yield were based on 4‐year monthly in situ data and statistical modeling using the United States Geological Survey load estimator model. We also estimated p CO2 and degas fluxes using carbonate equilibrium and gas‐exchange formulas. Our results indicated that the water was consistently p CO2 saturated (~90% of the cases) and that the steep terrain favors high gas evasion rates. The mean calculated fluvial export was 5.4 tC·km?2·year?1 with inorganic carbon dominating (dissolved inorganic carbon:dissolved organic carbon ratio >4), and degas rates (~40 tC km?2·year?1) were nearly sevenfold higher than the downstream export. The homogeneous land use in this nested catchment system results in similar water‐quality characteristics, and therefore, export rates are expected to be closely related to the rainfall–runoff relationships at each scale. Although the sampling campaigns did not fully reproduce storm‐event conditions and related effects such as flushing or dilution of in‐stream carbon, our results indicated a potential link between dissolved inorganic carbon and slower hydrological pathways related to subsurface water storage and movement.  相似文献   
68.
In order to investigate the relation between water chemistry and functional landscape elements, spatial data sets of characteristics for 68 small (0·2–1·5 km2) boreal forest catchments in western central Sweden were analysed in a geographical information system (GIS). The geographic data used were extracted from official topographic maps. Water sampled four times at different flow situations was analysed chemically. This paper focuses on one phenomenon that has an important influence on headwater quality in boreal, coniferous forest streams: generation and export of dissolved organic carbon (DOC). It is known that wetland cover (bogs and fens) in the catchment is a major source of DOC. In this study, a comparison was made between a large number of headwater catchments with varying spatial locations and areas of wetlands. How this variation, together with a number of other spatial variables, influences the DOC flux in the streamwater was analysed by statistical methods. There were significant, but not strong, correlations between the total percentages of wetland area and DOC flux measured at a medium flow situation, but not at high flow. Neither were there any significant correlations between the percentage of wetland area connected to streams, nor the percentage of wetland area within a zone 50 m from the stream and the DOC flux. There were, however, correlations between catchment mean slope and the DOC flux in all but one flow situations. This study showed that, considering geographical data retrieved from official sources, the topography of a catchment better explains the variation in DOC flux than the percentage and locations of distinct wetland areas. This emphasizes the need for high‐resolution elevation models accurate enough to reveal the sources of DOC found in headwater streams. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
69.
The world's longest record of river water quality (River Thames—130 years) provides a unique opportunity to understand fluvial dissolved organic carbon (DOC) concentrations dynamics. Understanding riverine DOC variability through long‐term studies is crucial to capture patterns and drivers influencing sources of DOC at scales relevant for decision making. The Thames basin (United Kingdom) has undergone massive land‐use change, as well as increased urbanisation and population during the period considered. We aimed to investigate the drivers of intra‐annual to interannual DOC variability, assess the variability due to natural and anthropogenic factors, and understand the causes for the increased DOC variability over the period. Two approaches were used to achieve these aims. The first method was singular spectrum analysis, which was used to reconstruct the major oscillatory modes of DOC, hydroclimatic variables, and atmospheric circulation patterns and to visualise the interaction between these variables. The second approach used was generalised additive modelling, which was used to investigate other non‐natural drivers of DOC variability. Our study shows that DOC variability increased by 80% over the data period, with the greatest increase occurring from the beginning of World War II onwards. The primary driver of the increase in DOC variability was the increase in the average value of fluvial DOC over the period of record, which was itself linked to the increase in basin population and diffuse DOC sources to the river due to land‐use and land‐management changes. Seasonal DOC variability was linked to streamflow and temperature. Our study allows to identify drivers of fluvial intra‐annual and interannual DOC variability and therefore empowers actions to reduce high DOC concentrations.  相似文献   
70.
Increases in pool water and peat temperature in summer accelerate peat decomposition and production of biogenic gases, which can be trapped in peat pores and cause oscillation of peatland surfaces and the rise of peat from the bottom of bog pools. Associated changes in peat water conductivity, holding capacity and transpiration also affect bog hydrology. Our multi‐year study is the first to show in detail the extent and dynamics of changes in bog pool depth and bottom topography associated with changes in temperature, peat type and other factors. The true seasonal rise of peat from the pool bottom begins once the water temperature at the pool bottom exceeds 13–14 °C, although the speed and extent of the rise depends on peat properties, making the rise more erratic than its subsequent descent. The more rapid descent occurs after the first large drop in the temperature of the pool's surface water at the end of summer, resulting from the combination of reduced methane production and increased gas solubility with less influence by peat properties. Much higher dissolved organic carbon concentrations (216 ± 26 mg l?1) in the pore water of peat risen from the bottom to the pool surface compared with that in the same type of peat at the pool bottom (62 ± 20 mg l?1) indicate an acceleration of peat decomposition at the warmer pool surface. We show the extent and character of changes in pool depth and bottom topography and how annual differences relate to temperature. Only a few degrees' increase in pool water temperature could induce the pool bottom to rise faster and more extensively for a longer period and enhance decomposition in the peat at the pool surface. This should be evaluated in greater detail to assess the effects of temperature increase on the carbon budget and hydrology of peatlands. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号