首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2896篇
  免费   656篇
  国内免费   512篇
测绘学   82篇
大气科学   24篇
地球物理   734篇
地质学   2614篇
海洋学   253篇
天文学   89篇
综合类   206篇
自然地理   62篇
  2024年   6篇
  2023年   16篇
  2022年   43篇
  2021年   76篇
  2020年   87篇
  2019年   77篇
  2018年   70篇
  2017年   83篇
  2016年   93篇
  2015年   117篇
  2014年   126篇
  2013年   147篇
  2012年   155篇
  2011年   196篇
  2010年   180篇
  2009年   193篇
  2008年   182篇
  2007年   216篇
  2006年   198篇
  2005年   208篇
  2004年   168篇
  2003年   152篇
  2002年   154篇
  2001年   153篇
  2000年   165篇
  1999年   141篇
  1998年   112篇
  1997年   126篇
  1996年   137篇
  1995年   85篇
  1994年   78篇
  1993年   42篇
  1992年   27篇
  1991年   19篇
  1990年   6篇
  1989年   11篇
  1988年   7篇
  1987年   8篇
  1985年   1篇
  1981年   3篇
排序方式: 共有4064条查询结果,搜索用时 31 毫秒
141.
On the basis of about 300 earthquake wave forms observed in the Shidian M S=5.9 sequences on April 12, 2001 recorded in Kunming Digital Seismic Network, the spectra of shear wave have been used to estimate the focal parameters of these earthquake sequences. The results show that within the magnitude range of 1.5–5.3, the seismic moments are 1010–1016 N·m, the corner frequencies are 0.2–0.8 Hz, radii of the focal rupture are 200–2 500 m and the stress drops are 0.1×105–20×105Pa. Through the statistical analyses of variation of corner frequency f c and stress drop Δσ with time, it is discovered that the average corner frequency of the foreshock sequences is obviously lower than that of the aftershock sequences. Contrarily, the average stress drops Δσ of the foreshock sequences are clearly higher than that of the aftershocks. It is considered that these variation characteristics of average corner frequency and stress drops before and after the main shock have index significance to the precursory information before a strong earthquake. The higher stress drops for the foreshock sequences show that the higher shear stresses have been stored in the area of main shock. After the main shock, most of the stresses have been released, so the aftershock sequences show a rupture process of lower stresses. Foundation item: Scientific and Technological Key Project of Yunnan Province (2001NG46)  相似文献   
142.
Tectono-stratigraphic analysis of the East Tanka fault zone (ETFZ), Suez Rift, indicates that the evolution of normal fault segments was an important control on syn-rift depositional patterns and sequence stratigraphy. Sedimentological and stratigraphic analysis of the Nukhul Formation indicates that it was deposited in a narrow (ca 1–2 km), elongate (ca 5 km), fault-bounded, tidally influenced embayment during the low subsidence rift-initiation phase. The Nukhul Formation is composed of transgressive (TST) and highstand (HST) systems tract couplets interpreted as reflecting fault-driven subsidence and the continuous creation of accommodation in the hangingwall to the ETFZ. The overlying Lower Rudeis Formation was deposited during the high subsidence rift-climax phase, and is composed of forced regressive systems tract (FRST) shallow marine sandbodies, and TST to HST offshore mudstones. Activity on the ETFZ led to marked spatial variability in stratal stacking patterns, systems tracts and key stratal surfaces, as footwall uplift, coupled with regressive marine erosion during deposition of FRST sandbodies, led to the removal of intervening TST–HST mudstone-dominated units, and the amalgamation of FRST sandbodies and the stratal surfaces bounding these units in the footwall. This study indicates that the evolution of normal fault segments over relatively short (i.e. <1 km) length-scales has the potential to enhance or suppress a eustatic sea-level signal, leading to marked spatial variations in stratal stacking patterns, systems tracts and key stratal surfaces. Crucially, these variations in sequence stratigraphic evolution may occur within time-equivalent stratal units, thus caution must be exercised when attempting to correlate syn-rift depositional units based solely on stratal stacking patterns. Furthermore, local, tectonically controlled variations in relative sea level can give rise to syn-rift stacking patterns which are counterintuitive in the context of the structural setting and perceived regional subsidence rates.  相似文献   
143.
This study investigates the controls on three-dimensional stratigraphic geometries and facies of shallow-water carbonate depositional sequences. A 15 km2 area of well-exposed Mid to Late Miocene carbonates on the margin of the Níjar Basin of SE Spain was mapped in detail. An attached carbonate platform and atoll developed from a steeply sloping basin margin over a basal topographic unconformity and an offshore dacite dome (Late Miocene). The older strata comprise prograding bioclastic (mollusc and coralline algae) dominated sediments and later Messinian Porites reefs form prograding and downstepping geometries (falling stage systems tract). Seven depositional sequences, their systems tracts and facies have been mapped and dated (using Sr isotopes) to define their morphology, stratigraphic geometries, and palaeo-environments. A relative sea-level curve and isochore maps were constructed for the three Messinian depositional sequences that precede the late Messinian evaporative drawdown of the Mediterranean. The main 3D controls on these depositional sequences are interpreted as being: (i) local, tectonically driven relative sea-level changes; (ii) the morphology of the underlying sequence boundary; (iii) the type of carbonate producers [bioclastic coralline algal and mollusc-dominated sequences accumulated in lows and on slopes of < 14° whereas the Porites reef-dominated sequence accumulated on steep slopes (up to 25°) and shallow-water highs]. Further controls were: (iv) the inherited palaeo-valleys and point-sourced clastics; (v) the amount of clastic sediments; and (vi) erosion during the following sequence boundary development. The stratigraphy is compared with that of adjacent Miocene basins in the western Mediterranean to differentiate local (tectonics, clastic supply, erosion history, carbonate-producing communities) versus regional (climatic, tectonic, palaeogeographic, sea-level) controls.  相似文献   
144.
梅冥相 《古地理学报》2005,7(4):437-447
天津蓟县剖面的中元古界高于庄组为一套厚度约为1 600m的碳酸盐岩地层,包括四个段:第一段以潮坪相叠层石白云岩为主;第二段主要为含锰白云岩;第三段发育较多的纹理化石灰岩和泥晶灰岩;第四段则以叠层石岩礁(叠层石生物丘和生物层)的发育为特点。根据岩相到岩相序列可在该套碳酸盐岩地层中识别出L-M型、潮下型、环潮坪型米级旋回层序。根据米级旋回层序的有序垂直叠加形式所反映出的沉积相序列可以把高于庄组划分为13个三级层序(SQ1至SQ13),并进一步归为4个二级层序。在以灰岩为主的高于庄组第三段中,其中的第三个三级层序(SQ11)中部的灰岩层中发育臼齿状构造。这种臼齿状构造以特别的形态、富含有机质、易硅化等特点可能表明了前寒武纪碳酸盐岩沉积作用的一些基本特征:第一、在浅水环境中发育叠层石而在较深水环境(中缓坡)中发育臼齿状构造,臼齿状构造就象叠层石一样是一种极为特别的与生物沉积作用相关的沉积构造;第二、在发育叠层石的潮坪环境中有利于发生白云石化作用,发育臼齿状构造的地层则以灰岩为主,这从一个侧面反映了前寒武纪白云岩似乎又不是原生白云岩。实际上,这些特征本身即代表了一些前寒武纪沉积学问题,随着研究的深入对这些问题将会得出更加接近自然事实的答案。  相似文献   
145.
The northeastern shelf margin of the South China Sea(SCS) is characterized by the development of large scale foresets complexes since Quaternary. Based on integral analysis of the seismic, well logging and paleontological data, successions since ~3.0 Ma can be defined as one composite sequence, consist of a set of regional transgressive to regressive sequences. They can be further divided into six 3 rd order sequences(SQ0–SQ5) based on the Exxon sequence stratigraphic model. Since ~1.6 Ma, five sets of deltaic systems characterized by development of wedge-shaped foresets complexes or clinoforms had been identified. High-resolution seismic data and the thick foresets allowed further divided of sub-depositional sequences(4 th order) of regression to transgression, which is basically consistent with published stacked benthic foram O-isotope records. Depositional systems identified in the study area include deltaic deposits(inner-shelf deltas and shelf-edge deltas), incised valleys, and slope slumping massive deposits. Since ~1.6 Ma, clinoforms prograded from the southern Panyu Lower Uplift toward the northern Baiyun Depression, shelf slope break migrated seaward, whereas the shelf edge of SQ0 migrated landward. The development of incised valleys in the continental shelf increased upward,especially intensive on the SB3 and SB2. The slumping massive deposits increased abruptly since SB2, which corresponds to the development of incised valleys. The evolution of depositional systems of continental slope mainly controlled by the combined influence of sea level changes, tectonic movements, sediment supply and climate changes. Since ~3.0 Ma, relative sea level of the northern SCS had been experienced transgression(~3.0 Ma BP) to regression(~1.6 Ma BP). The regional regression and maximum transgressions of the composite sequences were apparently enhanced by uplift or subsidence related to tectono-thermal events. In addition,climatic variations including monsoon intensification and the mid-Pleistocene transition may have enhanced sediment supply by increasing erosion rate and have an indispensable influence on the development of the incised valleys and 5 sets of deltaic systems since ~1.6 Ma.  相似文献   
146.
Exhumed basin margin‐scale clinothems provide important archives for understanding process interactions and reconstructing the physiography of sedimentary basins. However, studies of coeval shelf through slope to basin‐floor deposits are rarely documented, mainly due to outcrop or subsurface dataset limitations. Unit G from the Laingsburg depocentre (Karoo Basin, South Africa) is a rare example of a complete basin margin scale clinothem (>60 km long, 200 m‐high), with >10 km of depositional strike control, which allows a quasi‐3D study of a preserved shelf‐slope‐basin floor transition over a ca. 1,200 km2 area. Sand‐prone, wave‐influenced topset deposits close to the shelf‐edge rollover zone can be physically mapped down dip for ca. 10 km as they thicken and transition into heterolithic foreset/slope deposits. These deposits progressively fine and thin over tens of km farther down dip into sand‐starved bottomset/basin‐floor deposits. Only a few km along strike, the coeval foreset/slope deposits are bypass‐dominated with incisional features interpreted as minor slope conduits/gullies. The margin here is steeper, more channelized and records a stepped profile with evidence of sand‐filled intraslope topography, a preserved base‐of‐slope transition zone and sand‐rich bottomset/basin‐floor deposits. Unit G is interpreted as part of a composite depositional sequence that records a change in basin margin style from an underlying incised slope with large sand‐rich basin‐floor fans to an overlying accretion‐dominated shelf with limited sand supply to the slope and basin floor. The change in margin style is accompanied with decreased clinoform height/slope and increased shelf width. This is interpreted to reflect a transition in subsidence style from regional sag, driven by dynamic topography/inherited basement configuration, to early foreland basin flexural loading. Results of this study caution against reconstructing basin margin successions from partial datasets without accounting for temporal and spatial physiographic changes, with potential implications on predictive basin evolution models.  相似文献   
147.
The sedimentary sequences containing lithologic units with low permeability represent hydrogeologic systems, which, as of now, have been little studied despite their diffusion worldwide. A hydrogeologic study, aimed to assess the main factors controlling the groundwater flow dynamics in such systems and their hydraulic interactions with nearby carbonate aquifers, has been carried out in Longano (Isernia, Southern Italy). The analysis of the hydraulic heads, combined with the regimes of the springs and the electric conductivity of the groundwater, mainly reflect vertical and lateral heterogeneities of the media in terms of hydraulic properties. In particular, the flow system is controlled by lateral heterogeneities, which characterize a surficial horizon made up of clayey colluviums and talus deposits, separated from the deeper saturated, fissured bedrock. One‐to‐ten relationships in hydraulic heads, monitored in piezometers crossing the fissured media, further uphold the crucial role played by the lateral contrasts of permeability in controlling the flow dynamics. On the whole, significant interactions with the nearby carbonate hydrostructure take place. Nevertheless, the heterogeneities of the siliciclastic succession and surficial horizon, coupled with the compartmentalization of the carbonate system, lead to a complex hydrogeological scenario. In a wider perspective, this study gives information of utmost importance in order to improve the implementation of mathematical models and configuration of tapping works within these heterogeneous and complex settings. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
148.
The Upper Cretaceous succession of the Leonese Area (NW Spain) comprises mixed clastic and carbonate sediments. This succession is divided into two lithostratigraphic units, the Voznuevo Member and the Boñar Formation, which represent fluvial, shoreface, intertidal, subtidal and open‐shelf sedimentary environments. Regional seismic interpretation and sequence stratigraphic analysis have allowed the study of lateral and vertical changes in the sedimentary record and the definition of third‐order levels of stratigraphic cyclicity. On the basis of these data, the succession can be divided into two second‐order depositional sequences (DS‐1 and DS‐2), incorporating three system tracts in a lowstand to transgressive to highstand system tract succession (LST–TST–HST). These sequences are composed of fluvial systems at the base with palaeocurrents that flowed westward and south‐westward. The upper part of DS‐1 (Late Albian–Middle Turonian) shows evidence of intertidal to subtidal and offshore deposits. DS‐2 (Late Turonian–Campanian) comprises intertidal to subtidal, tidal flat, shallow marine and lacustrine deposits and interbedded fluvial deposits. Two regressive–transgressive cycles occurred in the area related to eustatic controls. The evolution of the basin can be explained by base‐level changes and associated shifts in depositional trends of successive retrogradational episodes. By using isobath and isopach maps, the main palaeogeographic features of DS‐1 and DS‐2 were constrained, namely coastline positions, the existence and orientation of corridors through which fluvial networks were channelled and the location of the main depocentres of the basin. Sedimentation on the Upper Cretaceous marine platform was mainly controlled by (i) oscillations of sea level and (ii) the orientation of Mesozoic faults, which induced sedimentation along depocentres. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
149.
We compare frictional strengths in the temperature range 25–250 °C of fault gouge from SAFOD (CDZ and SDZ) with quartzofeldspathic wall rocks typical of the central creeping section of the San Andreas Fault (Great Valley sequence and Franciscan Complex). The Great Valley and Franciscan samples have coefficients of friction, μ > 0.35 at all experimental conditions. Strength is unchanged between 25° and 150 °C, but μ increases at higher temperatures, exceeding 0.50 at 250 °C. Both samples are velocity strengthening at room temperature but show velocity-weakening behavior beginning at 150 °C and stick-slip motion at 250 °C. These rocks, therefore, have the potential for unstable seismic slip at depth. The CDZ gouge, with a high saponite content, is weak (μ = 0.09–0.17) and velocity strengthening in all experiments, and μ decreases at temperatures above 150 °C. Behavior of the SDZ is intermediate between the CDZ and wall rocks: μ < 0.2 and does not vary with temperature. Although saponite is probably not stable at depths greater than ∼3 km, substitution of the frictionally similar minerals talc and Mg-rich chlorite for saponite at higher temperatures could potentially extend the range of low strength and stable slip down to the base of the seismogenic zone.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号