首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1300篇
  免费   196篇
  国内免费   85篇
测绘学   22篇
大气科学   105篇
地球物理   502篇
地质学   85篇
海洋学   769篇
天文学   24篇
综合类   10篇
自然地理   64篇
  2022年   7篇
  2021年   19篇
  2020年   22篇
  2019年   64篇
  2018年   18篇
  2017年   59篇
  2016年   49篇
  2015年   53篇
  2014年   44篇
  2013年   38篇
  2012年   28篇
  2011年   101篇
  2010年   59篇
  2009年   100篇
  2008年   169篇
  2007年   120篇
  2006年   65篇
  2005年   41篇
  2004年   51篇
  2003年   69篇
  2002年   70篇
  2001年   52篇
  2000年   50篇
  1999年   42篇
  1998年   37篇
  1997年   26篇
  1996年   22篇
  1995年   14篇
  1994年   17篇
  1993年   20篇
  1992年   14篇
  1991年   11篇
  1990年   6篇
  1989年   7篇
  1988年   4篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   3篇
  1980年   2篇
  1954年   1篇
排序方式: 共有1581条查询结果,搜索用时 31 毫秒
71.
This paper discusses surface displacements, surface strain, rocking, and energy partitioning during reflection-of-plane waves in a fluid-saturated poroelastic half-space. The medium is modeled by Biot's theory, and is assumed to be saturated with inviscid fluid. A linear porosity-modulus relation based on experimental data on sandstones is used to determine the material parameters for Biot's model. Numerical results in terms of angle of incident waves and Poisson's ratio are illustrated for various porosities and degrees of solid frame stiffness. The results show that the amount of solid frame stiffness controls the response of a fluid-saturated porous system. A poroelastic medium with essentially dry-frame stiffness behaves like an elastic medium, and the influence of pore fluid increases as dry-frame stiffness is reduced. The effects of a second P-wave become noticeable in poroelastic media with low dry-frame stiffness.  相似文献   
72.
On the basis of Biot dynamic theory, an analytic solution of two-dimensional scattering and diffraction of plane SV waves by circular cylindrical canyons in a half space of saturated porous media is presented in this paper for the first time. The solution is obtained by employing the Fourier–Bessel series expansion technique. Parametric studies had been carried out, which includes: the angle of incidence, the frequency of the incident SV wave, the porosity of saturated porous medium and the stiffness and Poisson's ratio of the solid-skeleton. All the outcomes are useful for the seismic analysis of the surface topography conditions.  相似文献   
73.
This paper addresses size and boundary effects on wave propagation, fracture pattern development and fragmentation in small scale laboratory-size specimens for model blasting. Small block type specimens are centre-line loaded by linear explosive charges and supersonically detonated. Using elastic wave propagation theory and fracture mechanics it is shown that the type of boundary conditions which prevail at the outer boundary of the cylinder control the extension of bore-hole cracking and fragmentation within the body of the cylinder. In the case of a composite block where a cylindrical core of different material is embedded, the level of fracturing and fragmentation is controlled by the separation of the interface which in turn depends on the relative dimensions of the core and the block. The most important parameter is the ratio between the length of the pulse (space-wise or time-wise) and the characteristic dimensions of the models, i.e. in this case the dimensions of the core and the mantel. Stress wave superposition effects occur in the corner sections of the mantel. Theoretical results are in good agreement with recent experimental findings.  相似文献   
74.
The article presents initial ideas towards a network-based approach for sea state estimation used for marine operations and other maritime applications. In principle, all available means, ranging from in situ buoys, fleet of ships to remote sensing by satellite and aircraft, could be considered, emphasising that each means and any combinations among may act simultaneously. This study focuses on just one of the means; the use of ships as sailing wave buoys. The article introduces the wave buoy analogy, i.e. ship-as-a-wave-buoy, and it makes a proposal on how to impose (different) weights to the single ship-specific wave spectrum estimates obtained from multiple ships. Moreover, the work includes a discussion about the importance to associate a measure to reflect the (un)certainty of the wave spectrum estimate. The article presents a numerical case study, where multiple ships act simultaneously as wave spectrum-estimators. The case study relies on numerical motion simulations, as appropriate full-scale data is not yet available. In the analysis, it is shown that the use of simultaneous data from multiple ships leads to more accurate wave spectrum estimations.  相似文献   
75.
Statistical analysis of nonlinear random waves is important in coastal and ocean engineering. One approach for modeling nonlinear waves is second-order random wave theory, which involves sum- and difference-frequency interactions between wave components. The probability distribution of the non-Gaussian surface elevation can be solved using a technique developed by Kac and Siegert [21]. The wave field can be significantly modified by wave diffraction due to a structure, and the nonlinear diffracted wave elevation can be of interest in certain applications, such as the airgap prediction for an offshore structure. This paper investigates the wave statistics due to second-order diffraction, motivated by the scarcity of prior research. The crossing rate approach is used to evaluate the extreme wave elevation over a specified duration. The application is a bottom-supported cylindrical structure, for which semi-analytical solutions for the second-order transfer functions are available. A new efficient statistical method is developed to allow the distribution of the diffracted wave elevation to be obtained exactly, accounting for the statistical dependency between the linear, sum-frequency and difference-frequency components. Moreover, refinements are proposed to improve the efficiency for computing the free surface integral. The case study yields insights into the problem. In particular, the second-order nonlinearity is found to significantly amplify the extreme wave elevation, especially in the upstream region; conversely, the extreme elevation at an oblique location downstream is attenuated due to sheltering effects. The statistical dependency between the linear and sum-frequency components is also shown to be important for the extreme wave statistics.  相似文献   
76.
To assist in the prototyping and controller design of point-absorber wave energy converters (WECs), an easy-to-implement hybrid integral-equation method is presented for computing the frequency-domain hydrodynamic properties of bodies with a vertical axis of symmetry in waves. The current hybrid method decomposes the flow domain into two parts: an inner domain containing the body and an outer domain extending to infinity. The solution in the inner domain is computed using the boundary-element method, and the outer-domain solution is expressed using eigenfunctions. Proper matching at the domain boundary is achieved by enforcing continuity of velocity potential and its normal derivative. Body symmetry allows efficient computation using ring sources in the inner domain. The current method is successfully applied to three different body geometries including a vertical truncated floating cylinder, the McIver toroid, and the coaxial-cylinder WEC being developed in the authors’ laboratory. In particular, the current results indicate that, by replacing the flat bottom of the coaxial-cylinder WEC with the Berkeley-Wedge (BW) shape, viscous effect can be significantly reduced with only minor negative impact on wave-exciting force, thus increasing WEC efficiency. Finally, by comparing to experimental measurements, the current method is demonstrated to accurately predict the heave added mass and wave-exciting force on the coaxial-cylinder WEC with BW geometry. If a viscous damping correction factor is used, the heave motion amplitude can also be accurately computed.  相似文献   
77.
A model for the stress‐dependent elastic wave velocity response of fractured rock mass is proposed based on experimental evidence of stress‐dependent fracture normal and shear stiffness. Previously proposed models and previous experimental studies on stress‐dependent fracture stiffness have been reviewed to provide a basis for the new model. Most of the existing stress‐dependent elastic wave velocity models are empirical, with model parameters that do not have clear physical meanings. To propose the new model, the rock mass is assumed to have randomly oriented microscopic fractures. In addition, the characteristic length of microfractures is assumed to be sufficiently short compared to the rock mass dimensions. The macroscopic stress‐dependent elastic wave velocity response is assumed to be attributed to the stress dependency of fracture stiffness. The stress‐dependent fracture normal stiffness is defined as a generalized power law function of effective normal stress, which is a modification of the Goodman's model. On the other hand, the stress dependency of fracture shear stiffness is modeled as a linear function of normal stress based on experimental data. Ultrasonic wave velocity responses of a dry core sample of Berea sandstone were tested at effective stresses ranging from 2 to 55 MPa. Visual observation of thin sections obtained from the Berea sandstone confirms that the assumptions made for microstructure of rock mass model are appropriate. It is shown that the model can describe the stress‐dependent ultrasonic wave velocity responses of dry Berea sandstone with a set of reasonable material parameter values. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   
78.
An approach is developed to simulate wave–wave interactions using nonlinear elliptic mild-slope equation in domains where wave reflection, refraction, diffraction and breaking effects must also be considered. This involves the construction of an efficient solution procedure including effective boundary treatment, modification of the nonlinear equation to resolve convergence issues, and validation of the overall approach. For solving the second-order boundary-value problem, the Alternating Direction Implicit (ADI) scheme is employed, and the use of approximate boundary conditions is supplemented, for improved accuracy, with internal wave generation method and dissipative sponge layers. The performance of the nonlinear model is investigated for a range of practical wave conditions involving reflection, diffraction and shoaling in the presence of nonlinear wave–wave interactions. In addition, the transformation of a wave spectrum due to nonlinear shoaling and breaking, and nonlinear resonance inside a rectangular harbor are simulated. Numerical calculations are compared with the results from other relevant nonlinear models and experimental data available in literature. Results show that the approach developed here performs reasonably well, and has thus improved the applicability of this class of wave transformation models.  相似文献   
79.
Wave Energy Converters (WECs) have excellent potential as a source of renewable energy that is yet to be commercially realised. Recent attention has focused on the installation of Oscillating Water Column (OWC) devices as a part of harbor walls to provide advantages of cost–sharing structures and proximity of power generation facilities to existing infrastructure. In this paper, an incompressible three–dimensional CFD model is constructed to simulate a fixed Multi–Chamber OWC (MC–OWC) device. The CFD model is validated; the simulation results are found to be in good agreement with experimental results obtained from a scale physical model tested in a wave tank. The validated CFD model is then used for a benchmark study of 96 numerical tests. These investigate the effects of the PTO damping caused by the power take–off (PTO) system on device performance. The performance is assessed for a range of regular wave heights and periods. The results demonstrate that a PTO system with an intermediate damping can be used for all chambers in the MC–OWC device for most wave period ranges, except for the long wave periods. These require a higher PTO damping. An increased incident wave height reduces the device capture width ratio, but there is a noticeable improvement for long wave periods.  相似文献   
80.
This paper presents the use of a modular raft Wave Energy Converter (WEC)-type attachment at the fore edge of a rectangular Very Large Floating Structure (VLFS) for extracting wave energy while reducing hydroelastic responses of the VLFS under wave action. The proposed modular attachment comprises multiple independent auxiliary pontoons (i.e. modules) that are connected to the fore edge of the VLFS with hinges and linear Power Take-Off (PTO) systems. For the hydroelastic analysis, the auxiliary pontoons and the VLFS are modelled by using the Mindlin plate theory while the linear wave theory is used for modelling the fluid motion. The analysis is performed in the frequency domain using the hybrid Finite Element-Boundary Element (FE-BE) method. Parametric studies are carried out to investigate the effects of pontoon length, PTO damping coefficient, gap between auxiliary pontoons, and incident wave angle on the power capture factor as well as reductions in the hydroelastic responses of the VLFS with the modular attachment. It is found that in oblique waves, the modular attachment comprising multiple narrow pontoons outperforms the corresponding rigid attachment that consists of a single wide pontoon with respect to the power capture factor and the reduction in the deflection of the VLFS. In addition, it is possible to have a considerable gap between pontoons without significantly compromising the effectiveness of the modular attachment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号