首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3477篇
  免费   325篇
  国内免费   399篇
测绘学   11篇
大气科学   317篇
地球物理   1076篇
地质学   313篇
海洋学   1071篇
天文学   687篇
综合类   63篇
自然地理   663篇
  2024年   8篇
  2023年   23篇
  2022年   37篇
  2021年   32篇
  2020年   52篇
  2019年   83篇
  2018年   65篇
  2017年   71篇
  2016年   71篇
  2015年   82篇
  2014年   104篇
  2013年   190篇
  2012年   52篇
  2011年   120篇
  2010年   111篇
  2009年   212篇
  2008年   264篇
  2007年   308篇
  2006年   231篇
  2005年   183篇
  2004年   188篇
  2003年   208篇
  2002年   174篇
  2001年   125篇
  2000年   149篇
  1999年   160篇
  1998年   158篇
  1997年   75篇
  1996年   104篇
  1995年   77篇
  1994年   74篇
  1993年   72篇
  1992年   59篇
  1991年   53篇
  1990年   48篇
  1989年   38篇
  1988年   25篇
  1987年   24篇
  1986年   18篇
  1985年   13篇
  1984年   8篇
  1983年   5篇
  1982年   6篇
  1981年   3篇
  1980年   19篇
  1979年   3篇
  1978年   7篇
  1977年   5篇
  1954年   4篇
排序方式: 共有4201条查询结果,搜索用时 46 毫秒
981.
Regular and irregular wave forces acting on vertical walls are studied by a previously developed numerical model. The computed wave forces are compared with the available experimental data to verify the numerical model, and satisfactory agreements are obtained. The variation of wave forces with incident angles and the shape of simultaneous pressure distribution are investigated, and the comparisons between numerical results and Goda' s predictions are also carried out. It is concluded that the maximum wave forces acting on the unit length of vertical wall is often induced by the obliquely incident waves instead of normally incident waves, while Goda' s formula may be inapplicable for oblique wave incidence. The shape of simultaneous pressure distribution is not significantly influenced by incident angles, and it can be favorably predicted by Goda' s formula. When regular wave heights are taken as the same as irregular wave height H1%, the irregular wave forces Ph. 1% are slightly larger than regular wave forces in most cases.  相似文献   
982.
Internal inlet for wave generation and absorption treatment   总被引:1,自引:0,他引:1  
A new method of implementing, in two-dimensional (2-D) Navier–Stokes equations, a numerical internal wave generation in the finite volume formulation is developed. To our knowledge, the originality of this model is on the specification of an internal inlet velocity defined as a source line for the generation of linear and non-linear waves. The use of a single cell to represent the source line and its transformation to an internal boundary condition proved to be an interesting alternative to the common procedure of adding a mass source term to the continuity equation within a multi-cell rectangular region. Given the reduction of the source domain to a one-dimensional region, this simple new type of source introduced less perturbation than the 2-D source type. This model was successfully implemented in the PHOENICS code (Parabolic Hyperbolic Or Elliptic Numerical Integration Code Series). In addition, the volume of fluid (VOF) fraction was used to describe the free surface displacements. A friction force term was added to the momentum transport equation in the vertical direction, in order to enhance wave damping, within relatively limited number of cells representing the sponge layers at the open boundaries. For monochromatic wave, propagating on constant water depth, numerical and analytical results showed good agreements for free surface profiles and vertical distribution of velocity components. For solitary wave simulation, the wave shape and velocity were preserved; while, small discrepancy in the tailing edge of the free surface profiles was observed. The suitability of this new numerical wave generation model for a two source lines extension was investigated and proven to be innovative. The comparisons between numerical, analytical and experimental results showed that the height of the merging waves was correctly reproduced and that the reflected waves do not interact with the source lines.  相似文献   
983.
Accurate measurements of solar p-mode frequencies and frequency splittings at high degree l require an adequate theoretical knowledge of the effects of mode coupling, induced by the variation with latitude of the angular velocity of the solar internal rotation. Earlier results for expansion coefficients of composite solutions (coupling coefficients) are due to Woodard. In this paper, the analysis is extended to allow for the dependence of the differential rotation on depth, and the result is expressed in terms of measurable quantities (the rotational splitting coefficients), which makes it convenient for diagnostic purposes. The analysis is based on the approach of quasi-degenerate perturbation theory, and is extended further to address possible effects of mode coupling in the observational line profiles. It is shown, using approximations applicable at high degree l , that the expected line profiles of composite modes in the observational power spectra are not distorted by mode coupling.  相似文献   
984.
985.
For the case of Tycho’s supernova remnant (SNR) we present the relation between the blast wave and contact discontinuity radii calculated within the nonlinear kinetic theory of cosmic ray (CR) acceleration in SNRs. It is demonstrated that these radii are confirmed by recently published Chandra measurements which show that the observed contact discontinuity radius is so close to the shock radius that it can only be explained by efficient CR acceleration which in turn makes the medium more compressible. Together with the recently determined new value E sn=1.2×1051 erg of the SN explosion energy this also confirms our previous conclusion that a TeV γ-ray flux of (2–5)×10−13 erg/(cm2 s) is to be expected from Tycho’s SNR. Chandra measurements and the HEGRA upper limit of the TeV γ-ray flux together limit the source distance d to 3.3≤d≤4 kpc.  相似文献   
986.
The combined and individual responses of the first and second baroclinic mode dynamics of the tropical Indian Ocean to the well-known Indian Ocean Dipole mode (IOD) wind anomalies are investigated. The IOD forced first baroclinic Rossby waves arrive at the western boundary in three months, while the reflected component from the eastern boundary with opposite phase arrives in five to six months, both carry input energy to the west. The inclusion of the second baroclinic mode slows down the wave propagation by mode coupling and stretches the energy spectrum to a relatively longer time scale. The total energy exists in the equatorial wave guide for at least five months from the forcing, as much as 10% of that of the atmospheric input, which mainly dissipates at the western boundary. The individual responses of the ocean to IOD interannual wind anomaly show that the significant modes of oceanic anomalies are confined to a wave guide of 10° on either side of the equator.  相似文献   
987.
Underwater landslide can trigger impulsive waves with high amplitude and run-up, which may cause substantial damage. In this work, the experimental investigations are performed to study the impulsive wave characteristics caused by underwater landslides. The effects of landslide geometry and kinematics on wave characteristics are studied by performing 84 laboratory experiments. The influences of thickness, volume and shape of failure mass on the characteristics of initial wave are discussed. The impacts of water body conditions such as the slope of sliding bed and the initial submergence of underwater landslide are also examined. The present experimental data as well as the available data in the literature are used to provide an applied method for prediction of the initial wave amplitude. The present prediction method is properly verified by several experimental, numerical and real case data.  相似文献   
988.
The northwest Hatton Bank margin is an ideal locality to demonstrate the interaction between bottom currents and slope configuration in controlling the distribution and morphology of bottom current deposits. The slope area investigated is isolated from any major terrigenous sediment supply and at present is influenced by the Deep Northern Boundary Current (DNBC). Swath bathymetry and high resolution acoustic data allow us to evaluate both local and regional controls on slope sedimentation and the possible mechanisms for bottom-current velocity variability across a slope setting within the NW European continental margin. The slope exhibits sculpting by bottom currents that flow in a predominantly southwest to northeast direction, and is only locally modified by slope failures. Positive relief features such as the Endymion Spur play an important role in constraining and accelerating bottom-current flow and, consequently, in redistributing sediment along the margin. We demonstrate that the size, morphology and distribution of bottom-current deposits along the slope vary as a function of the interaction between bottom currents, regional slope orientation and local seafloor topography.  相似文献   
989.
A numerical model is developed to simulate fully nonlinear extreme waves in finite and infinite water-depth wave tanks. A semi-mixed Eulerian-Lagrangian formulation is adopted and a higher-order boundary element method in conjunction with an image Green function is used for the fluid domain. The boundary values on the free surface are updated at each time step by a fourth-order Runga-Kutta time-marching scheme at each time step. Input wave characteristics are specified at the upstream boundary by an appropr...  相似文献   
990.
Interfacial waves and wave-induced tangential stress are studied for geostrophic small amplitude waves of two-layer .uid with a top free surface and a .at bottom. The solutions were deduced from the general form of linear .uid dynamic equations of two-layer .uid under the f -plane approximation, and wave-induced tangential stress were estimated based on the solutions obtained. As expected, the solutions derived from the present work include as special cases those obtained by Sun et al. (2004. Science in China, Ser. D, 47(12): 1147–1154) for geostrophic small amplitude surface wave solutions and wave-induced tangential stress if the density of the upper layer is much smaller than that of the lower layer. The results show that the interface and the surface will oscillate synchronously, and the in.uence of the earth’s rotation both on the surface wave solutions and the interfacial wave solutions should be considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号