首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   362篇
  免费   63篇
  国内免费   45篇
测绘学   2篇
大气科学   2篇
地球物理   150篇
地质学   149篇
海洋学   120篇
天文学   1篇
综合类   15篇
自然地理   31篇
  2024年   1篇
  2023年   4篇
  2022年   4篇
  2021年   10篇
  2020年   24篇
  2019年   20篇
  2018年   14篇
  2017年   11篇
  2016年   16篇
  2015年   14篇
  2014年   20篇
  2013年   28篇
  2012年   22篇
  2011年   14篇
  2010年   16篇
  2009年   27篇
  2008年   26篇
  2007年   33篇
  2006年   24篇
  2005年   42篇
  2004年   11篇
  2003年   9篇
  2002年   8篇
  2001年   6篇
  2000年   6篇
  1999年   3篇
  1998年   6篇
  1997年   6篇
  1995年   18篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   9篇
  1990年   2篇
  1989年   1篇
  1988年   7篇
排序方式: 共有470条查询结果,搜索用时 15 毫秒
21.
We report on calculations of the on-shore run-up of waves that might be generated by the impact of subkilometre asteroids into the deep ocean. The calculations were done with the COULWAVE code, which models the propagation and shore-interaction of non-linear moderate- to long-wavelength waves  ( kh < π)  using the extended Boussinesq approximation. We carried out run-up calculations for several different situations: (1) laboratory-scale monochromatic wave trains onto simple slopes; (2) 10–100 m monochromatic wave trains onto simple slopes; (3) 10–100 m monochromatic wave trains onto a compound slope representing a typical bathymetric profile of the Pacific coast of North America; (4) time-variable scaled trains generated by the collapse of an impact cavity in deep water onto simple slopes and (5) full-amplitude trains onto the Pacific coast profile. For the last case, we also investigated the effects of bottom friction on the run-up. For all cases, we compare our results with the so-called 'Irribaren scaling': The relative run-up   R / H 0=ξ= s ( H 0/ L 0)−1/2  , where the run-up is   R , H 0  is the deep-water waveheight, L 0 is the deep-water wavelength, s is the slope and ξ is a dimensionless quantity known as the Irribaren number. Our results suggest that Irribaren scaling breaks down for shallow slopes   s ≤ 0.01  when  ξ < 0.1 − 0.2  , below which   R / H 0  is approximately constant. This regime corresponds to steep waves and very shallow slopes, which are the most relevant for impact tsunami, but also the most difficult to access experimentally.  相似文献   
22.
We report the results of a study of the physical characteristics and socio-economic impacts of the Indian Ocean Tsunami of 26 December 2004 on the tourist island of Langkawi, Malaysia. In comparison with many other locations struck by the tsunami, the immediate physical and socio-economic impacts in Langkawi were relatively minor. A detailed survey of the watermark and ground elevations was undertaken in the worst affected area between Sungei Kuala Teriang and Sungei Kuala Melaka. Here, the tsunami reached a maximum elevation of 4.29 m as it crossed the coast, with a maximum flow depth of 2.0 m and a very consistent run-up elevation relative to mean sea level of 300 ± 10 cm. The tsunami inundated inshore areas for 300 m and penetrated inland along creeks for 500–1000 m. Structural damage to buildings was confined to within 50–150 m of the shoreline where about 10% of the houses were completely destroyed and 60–70% suffered significant structural damage. Damage was particularly severe in areas where there was no engineered coastal protection, but while coastal revetments did provide enhanced protection for houses at the waterfront, the coastline in the study area appeared to be more heavily impacted than elsewhere in Langkawi because wave energy was focused on the area by offshore breakwaters built to protect the Langkawi port and airport. Emergency response after the tsunami was rapid and efficient but would have been improved if the local police station had not been rendered inoperative by the first wave, and if a mechanism had been in place to ensure that informal advance warnings transmitted between Phuket (Thailand), Langkawi and Penang (Malaysia) by tourist operators could have been more widely disseminated.  相似文献   
23.
Tsunami deposits provide a basis for reconstructing Holocene histories of great earthquakes and tsunamis on the Pacific Coast of southwest Japan. The deposits have been found in the past 15 years at lakes, lagoons, outcrops, and archaeological excavations. The inferred tsunami histories span 3000 years for the Nankai and Suruga Troughs and nearly 10,000 years for the Sagami Trough. The inferred histories contain recurrence intervals of variable length. The shortest of these —100–200 years for the Nankai Trough, 150–300 years for the Sagami Trough — resemble those known from written history of the past 1000–1500 years. Longer intervals inferred from the tsunami deposits probably reflect variability in rupture mode, incompleteness of geologic records, and insufficient research. The region's tsunami history could be clarified by improving the geologic distinction between tsunami and storm, dating the inferred tsunamis more accurately and precisely, and using the deposits to help quantify the source areas and sizes of the parent earthquakes.  相似文献   
24.
For Probabilistic Tsunami Hazard Analysis (PTHA), we propose a logic-tree approach to construct tsunami hazard curves (relationship between tsunami height and probability of exceedance) and present some examples for Japan for the purpose of quantitative assessments of tsunami risk for important coastal facilities. A hazard curve is obtained by integration over the aleatory uncertainties, and numerous hazard curves are obtained for different branches of logic-tree representing epistemic uncertainty. A PTHA consists of a tsunami source model and coastal tsunami height estimation. We developed the logic-tree models for local tsunami sources around Japan and for distant tsunami sources along the South American subduction zones. Logic-trees were made for tsunami source zones, size and frequency of tsunamigenic earthquakes, fault models, and standard error of estimated tsunami heights. Numerical simulation rather than empirical relation was used for estimating the median tsunami heights. Weights of discrete branches that represent alternative hypotheses and interpretations were determined by the questionnaire survey for tsunami and earthquake experts, whereas those representing the error of estimated value were determined on the basis of historical data. Examples of tsunami hazard curves were illustrated for the coastal sites, and uncertainty in the tsunami hazard was displayed by 5-, 16-, 50-, 84- and 95-percentile and mean hazard curves.  相似文献   
25.
We identified a phase representing the source length of tsunami's in the tide gauge records around Japan. This phase was observed at tide stations, located in the direction of the long axis of the sources, for four large tsunamis: 1964 Niigata, 1968 Tokachi-oki, 1983 Nihonkaichubu, and 1993 Hokkaido-nanseioki. The phase consists of two continuous crests starting as the initial arrival and has a time length of 15–47 minutes. This is the time required to propagate across the source area along the long axis. Strong evidence that the phase is generated at the source is the good correlation between waveform observed at one side and time-inversed waveform at another side. The correlation results from the instantaneous generation of the source. The source lengths of 74–254 km were obtained under an assumption of sea depths at the sources and verified to coincide with ones within a relative error of 15% that were previously obtained by other methods.  相似文献   
26.
We extend to the regional field of distances the procedure of one-station estimation of seismic moments using the mantle magnitudeM m, as introduced earlier in the case of teleseismic events. A theoretical analysis of the validity of the asymptotic expansion of normal modes in terms of surface waves, which was used in the development ofM m, upholds the validity of the algorithm for distances as short as 1.5°. This is confirmed by the analysis of a dataset of 149 GEOSCOPE records obtained at distances ranging from 1.5 to 15°, from earthquakes with moments between 1024 and 2.5×1027 dyn-cm. The performance ofM m as measured in terms of average residual with respect to published values ofM 0, and standard deviation of the residuals, is not degraded in this distance range, with respect to the teleseismic case. This indicates that the mantle magnitudeM mcan be reliably used at regional distances, notably for tsunami warning applications.  相似文献   
27.
We carried out observations of sea-level fluctuations simultaneously at three stations on the coast of Heda Bay, Honshu, Japan, using supersonic-type water level gauges controlled by a personal computer. Analyses of the obtained data showed predominant spectral peaks at periods of 7.6, 2.0 and 1.3 minutes for all three stations. Comparison of the observed data with numerically calculated normal oscillation modes of the bay indicates that these three spectral peaks correspond to the theoretical first, third and seventh normal modes of the basin respectively, judging from the results of cross-spectral analyses. The reason for the absence of the remaining normal modes, especially of the second or the lateral first mode of the basin, is briefly considered.  相似文献   
28.
At present, there is a very limited information on the levels and distribution of dissolved metals in Manila Bay. In this study, the horizontal and vertical distribution of operationally defined species (labile, bound and total) of dissolved copper (Cu), cadmium (Cd) and zinc (Zn) were determined using differential pulse anodic and cathodic stripping voltammetry in water samples obtained from 18 stations in November 1998. In addition, the 24-h variability in the concentrations of these species at different depths in the water column was determined. These measurements were complemented by the determination of temperature, salinity, dissolved oxygen, chlorophyll a, particulate organic carbon and nutrients. Results showed that more than 50% of total dissolved copper and cadmium were labile while 50% of total dissolved zinc was organically bound. Vertical profiles showed that Cu, Cd and Zn concentrations were generally high at the surface. Zinc and cadmium were characterised by the presence of a mid-depth minimum while copper did not show any clear vertical trend.

Dissolved Cu concentrations during the spatial and diurnal samplings ranged from 0.32 to 6.95 nM and 1.52 to 45.65 nM, respectively. For Cd, the concentrations in 18 stations ranged from 0.05 to 2.92 nM, and from 0.03 to 2.42 nM over a 24-h period. Zn concentrations ranged from 2.48 to 147.43 nM and 2.87 to 88.27 nM during the spatial and diurnal samplings, respectively. The large variation in the concentration of Cu, Cd and Zn in the bay was observed to be associated with the presence of a large vertical density gradient in the water column, which appeared to limit the exchange of materials between the surface and bottom waters. Elevated levels of these metals near point sources suggest anthropogenic inputs in the bay.  相似文献   

29.
M TSU : Recovering Seismic Moments from Tsunameter Records   总被引:1,自引:0,他引:1  
We define a new magnitude scale, MTSU, allowing the quantification of the seismic moment M0 of an earthquake based on recordings of its tsunami in the far field by ocean-bottom pressure sensors (``tsunameters') deployed in ocean basins, far from continental or island shores which are known to affect profoundly and in a nonlinear fashion the amplitude of the tsunami wave. The formula for MTSU, MTSU = log10 M0 − 20 = log10 X (ω) + CDTSU + CSTSU + C0, where X (ω) is the spectral amplitude of the tsunami, CDTSU a distance correction and CSTSU a source correction, is directly adapted from the mantle magnitude Mm introduced for seismic surface waves by Okal and Talandier. Like Mm, its corrections are fully justified theoretically based on the representation of a tsunami wave as a branch of the Earth's normal modes. Even the locking constant C0, which may depend on the nature of the recording (surface amplitude of the tsunami or overpressure at the ocean floor) and its units, is predicted theoretically. MTSU combines the power of a theoretically developed algorithm, with the robustness of a magnitude measurement that does not take into account such parameters as focal geometry and exact depth, which may not be available under operational conditions in the framework of tsunami warning. We verify the performance of the concept on simulations of the great 1946 Aleutian tsunami at two virtual gauges, and then apply the algorithm to 24 records of 7 tsunamis at DART tsunameters during the years 1994–2003. We find that MTSU generally recovers the seismic moment M0 within 0.2 logarithmic units, even under unfavorable conditions such as excessive focal depth and refraction of the tsunami wave around continental masses. Finally, we apply the algorithm to the JASON satellite trace obtained over the Bay of Bengal during the 2004 Sumatra tsunami, after transforming the trace into a time series through a simple ad hoc procedure. Results are surprisingly good, with most estimates of the moment being over 1029 dyn-cm, and thus identifying the source as an exceptionally large earthquake.  相似文献   
30.
提出了利用精密单点定位(precise point positioning,PPP)技术进行海啸预警的方法,并利用TriP软件对实测浮标数据进行了处理,将得出的海面高数据和海啸波模型叠加进行了模拟分析。仿真结果表明,利用精密单点定位技术进行海啸预警,能够监测判断海啸的发生,并获得海啸波到达海岸的波高和时间,提供一定的预警信息。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号