首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1210篇
  免费   35篇
  国内免费   65篇
测绘学   56篇
大气科学   46篇
地球物理   87篇
地质学   81篇
海洋学   71篇
天文学   893篇
综合类   21篇
自然地理   55篇
  2023年   6篇
  2022年   10篇
  2021年   12篇
  2020年   17篇
  2019年   14篇
  2018年   14篇
  2017年   19篇
  2016年   18篇
  2015年   36篇
  2014年   37篇
  2013年   39篇
  2012年   27篇
  2011年   17篇
  2010年   36篇
  2009年   72篇
  2008年   42篇
  2007年   79篇
  2006年   80篇
  2005年   96篇
  2004年   95篇
  2003年   87篇
  2002年   81篇
  2001年   62篇
  2000年   63篇
  1999年   65篇
  1998年   89篇
  1997年   8篇
  1996年   8篇
  1995年   16篇
  1994年   12篇
  1993年   8篇
  1992年   4篇
  1991年   8篇
  1990年   8篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1980年   3篇
  1976年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1310条查询结果,搜索用时 15 毫秒
71.
We review the available observational data to show that the slope of the RR Lyrae MV –[Fe/H] relation is 0.18±0.03. The recent claim by Feast that, because of biases, the true slope is much steeper is not justified.  相似文献   
72.
Properties of the so-called strange modes occurring in linear stability calculations of stellar models are discussed. The behaviour of these modes is compared for two different sets of stellar models, for very massive zero-age main-sequence stars and for luminous hydrogen-deficient stars, both with high luminosity-to-mass ratios. We have found that the peculiar behaviour of the frequencies of the strange modes with the change of a control parameter is caused by the pulsation amplitude of a particular eigenmode being strongly confined to the outer part of the envelope, around the density inversion zone. The frequency of a strange mode changes because the depth of the confinement zone changes with the control parameter. Weakly non-adiabatic strange modes tend to be overstable because the amplitude confinement quenches the effect of radiative damping. On the other hand, extremely non-adiabatic strange modes become overstable because the perturbation of radiation force (gradient of radiation pressure) provides a restoring force that can be out of phase with the density perturbation. We discuss this mechanism by using a plane-parallel two-zone model.  相似文献   
73.
We present 14 nights of medium resolution (1–2 Å) spectroscopy of the eclipsing cataclysmic variable UU Aquarii obtained during a high accretion state in 1995 August–October. UU Aqr appears to be an SW Sextantis (SW Sex) star, as noted by Baptista, Steiner & Horne, and we discuss its spectroscopic behaviour in the context of the SW Sex phenomenon. Emission-line equivalent width curves, Doppler tomography, and line profile simulation provide evidence for the presence of a bright spot at the impact site of the accretion stream with the edge of the disc, and a non-axisymmetric, vertically and azimuthally extended absorbing structure in the disc. The absorption has maximum depth in the emission lines around orbital phase 0.8, but is present from φ≈0.4 to φ≈0.95. An origin is explored for this absorbing structure (as well as for the other spectroscopic behaviour of UU Aqr) in terms of the explosive impact of the accretion stream with the disc.  相似文献   
74.
The stability of massive stars is re-examined with respect to an adiabatic dynamical instability discovered by Stothers & Chin. An adiabatic stability analysis is performed, its validity for the objects being considered is discussed, and the relation between the mean adiabatic index and adiabatic stability is commented on. As the results of Stothers & Chin could not be confirmed, we suspect that luminous blue variable instability is due to non-adiabatic effects.  相似文献   
75.
76.
Modelling the polarized cyclotron emission from magnetic cataclysmic variables has been a pivotal technique for determining the structure of the accretion zones on the white dwarf. To date, model solutions have been obtained from trial fits to the intensity and polarization data, which have been constructed from emission regions (for example arcs and spots) put in by hand. These models were all inferred indirectly from arguments based on the polarization and X-ray light curves.   We present a more analytical and objective technique using optimization by a genetic algorithm, Tikhonov regularization and Powell's method that robustly models the details of polarized emission.   To demonstrate the success of this technique, we show the results of several simulations in which we calculated the intensity and polarization curves from arbitrarily shaped emission regions on the surface of a sphere and then applied our code to these curves to recover the original test data. We also show how adding artificial noise affects the outcome of the optimization technique.  相似文献   
77.
We present numerical models based on realistic treatment of the intensity spectrum (from model atmospheres), and demonstrate that they are consistent with Kurtz and Medupe's recent formula in showing that limb darkening is too small an effect to explain the observed sharp decline of pulsation light amplitude with wavelength in rapidly oscillating Ap stars. Kurtz and Medupe's formula is shown to be a special form of Watson's earlier general formula for non-radial light variations of a star pulsating in any mode ( l m ). Using a technique suggested by Kurtz and Medupe we derive temperature semi-amplitude as a function of depth in the atmospheres of α Cir and HR 3831, assuming that we can neglect non-adiabatic effects.  相似文献   
78.
High-resolution spectral data of the Fe  II 5318 Å line in the γ Doradus star HD 164615 are presented. These show systematic changes in the spectral lineshapes with the photometric period of 0.8133 d which are modelled using either non-radial pulsations or cool star-spots. The non-radial modes that can fit the lineshape changes have m degree of 2–4. However, only the m = 2 mode seems to be consistent with the amplitude of the radial velocity variations measured for this star. The star-spot model, although it can qualitatively fit the lineshape changes, is excluded as a possible hypothesis on the basis of (1) poorer fits to the observed spectral line profiles, (2) an inability to account for the large changes in the spectral linewidth as a function of phase, (3) a predicted radial velocity curve that looks qualitatively different from the observed one, and (4) a predicted photometric curve that is a factor of 5 larger than the observed light curve (and with the wrong qualitative shape). Finally, a 'Doppler image' (assuming cool spots) derived from a sequence of synthetic line profiles having non-radial pulsations results in an image that is almost identical to the Doppler image derived for HD 164615. These results provide strong evidence that non-radial pulsations are indeed the explanation for the variability of HD 164615 as well as the other γ Dor variables.  相似文献   
79.
A certain potential function is studied as a possible model for the galactic potential. Some solutions are obtained. Also the numerical study of some of the orbits and their stability is carried out.  相似文献   
80.
The AM Canum Venaticorum (AM CVn) stars are rare interacting white dwarf binaries, whose formation and evolution are still poorly known. The Sloan Digital Sky Survey provides, for the first time, a sample of six AM CVn stars (out of a total population of 18) that are sufficiently homogeneous that we can start to study the population in some detail.
We use the Sloan sample to 'calibrate' theoretical population synthesis models for the space density of AM CVn stars. We consider optimistic and pessimistic models for different theoretical formation channels, which yield predictions for the local space density that are more than two orders of magnitude apart. When calibrated with the observations, all models give a local space density  ρ0= 1–3 × 10−6 pc−3  , which is lower than expected.
We discuss the implications for the formation of AM CVn stars, and conclude that at least one of the dominant formation channels (the double-degenerate channel) has to be suppressed relative to the optimistic models. In the framework of the current models this suggests that the mass transfer between white dwarfs usually cannot be stabilized. We furthermore discuss evolutionary effects that have so far not been considered in population synthesis models, but which could be of influence for the observed population. We finish by remarking that, with our lower space density, the expected number of Galactic AM CVn stars resolvable by gravitational-wave detectors like the Laser Interferometer Space Antenna ( LISA ) should be lowered from current estimates, to about 1000 for a mission duration of 1 yr.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号