首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24068篇
  免费   2971篇
  国内免费   4421篇
测绘学   1272篇
大气科学   4201篇
地球物理   3185篇
地质学   7297篇
海洋学   4817篇
天文学   5224篇
综合类   1236篇
自然地理   4228篇
  2024年   81篇
  2023年   236篇
  2022年   640篇
  2021年   827篇
  2020年   850篇
  2019年   1100篇
  2018年   834篇
  2017年   961篇
  2016年   952篇
  2015年   1055篇
  2014年   1395篇
  2013年   1830篇
  2012年   1369篇
  2011年   1586篇
  2010年   1471篇
  2009年   1915篇
  2008年   1865篇
  2007年   1754篇
  2006年   1613篇
  2005年   1453篇
  2004年   1176篇
  2003年   1046篇
  2002年   867篇
  2001年   760篇
  2000年   674篇
  1999年   603篇
  1998年   497篇
  1997年   369篇
  1996年   271篇
  1995年   259篇
  1994年   242篇
  1993年   213篇
  1992年   127篇
  1991年   104篇
  1990年   87篇
  1989年   60篇
  1988年   64篇
  1987年   30篇
  1986年   31篇
  1985年   44篇
  1984年   27篇
  1983年   31篇
  1982年   27篇
  1981年   16篇
  1980年   14篇
  1979年   6篇
  1978年   5篇
  1977年   15篇
  1954年   3篇
  1875年   1篇
排序方式: 共有10000条查询结果,搜索用时 546 毫秒
991.
Land subsidence in densely urbanized areas is a global problem that is primarily caused by excessive groundwater withdrawal. The Kathmandu Basin is one such area where subsidence due to groundwater depletion has been a major problem in recent years. Moreover, on 25 April 2015, this basin experienced large crustal movements caused by the Gorkha earthquake (Mw 7.8). Consequently, the effects of earthquake-induced deformation could affect the temporal and spatial nature of anthropogenic subsidence in the basin. However, this effect has not yet been fully studied. In this paper, we applied the SBAS-DInSAR technique to estimate the spatiotemporal displacement of land subsidence in the Kathmandu Basin before and after the Gorkha earthquake, using 16 ALOS-1 Phased Array L-band Synthetic Aperture Radar (PALSAR) images during the pre-seismic period and 26 Sentinel-1 A/B SAR images during the pre- and post-seismic periods. The results showed that the mean subsidence rate in the central part of the basin was about ?8.2 cm/year before the earthquake. The spatial extents of the subsiding areas were well-correlated with the spatial distributions of the compressible clay layers in the basin. We infer from time-series InSAR analysis that subsidence in the Kathmandu basin could be associated with fluvio-lacustrine (clay) deposits and local hydrogeological conditions. However, after the mainshock, the subsidence rate significantly increased to ?15 and ?12 cm/year during early post-seismic (108 days) and post-seismic (2015–2016) period, respectively. Based on a spatial analysis of the subsidence rate map, the entire basin uplifted during the co-seismic period has started to subside and become stable during the early-post-seismic period. This is because of the elastic rebound of co-seismic deformation. However, interestingly, the localized areas show increased subsidence rates during both the early-post- and post-seismic periods. Therefore, we believe that the large co-seismic deformation experienced in this basin might induce the local subsidence to increase in rate, caused by oscillations of the water table level in the clay layer.  相似文献   
992.
The dynamic relationships between land use change and its driving forces vary spatially and can be identified by geographically weighted regression (GWR). We present a novel cellular automata (GWR-CA) model that incorporates GWR-derived spatially varying relationships to simulate land use change. Our GWR-CA model is characterized by spatially nonstationary transition rules that fully address local interactions in land use change. More importantly, each driving factor in our GWR model contains effects that both promote and resist land use change. We applied GWR-CA to simulate rapid land use change in Suzhou City on the Yangtze River Delta from 2000 to 2015. The GWR coefficients were visualized to highlight their spatial patterns and local variation, which are closely associated with their effects on land use change. The transition rules indicate low land conversion potential in the city’s center and outer suburbs, but higher land conversion potential in the inner near suburbs along the belt expressway. Residual statistics show that GWR fits the input data better than logistic regression (LR). Compared with an LR-based CA model, GWR-CA improves overall accuracy by 4.1% and captures 5.5% more urban growth, suggesting that GWR-CA may be superior in modeling land use change. Our results demonstrate that the GWR-CA model is effective in capturing spatially varying land transition rules to produce more realistic results, and is suitable for simulating land use change and urban expansion in rapidly urbanizing regions.  相似文献   
993.
师爽  龚朝阳  焦骞骞  许德如  张胜印  常华诚  胡彬 《地质论评》2021,67(5):67060006-67060006
粤西河台金矿区位于钦州湾—杭州湾(钦—杭)结合带南段的云开地区,是典型的受韧性剪切带控制的金矿。然而,对于剪切带中有利于金成矿的地质环境及其成矿过程仍然存在争议。本文在对河台矿区高村矿床进行详细野外地质调查的基础上,通过X射线衍射(XRD)对含金剪切带中各类糜棱岩系列岩石进行系统研究,建立应力变化—成分变异的对比序列,从而进一步揭示剪切变形与金矿化的关系。结果显示,剪切带中白(绢)云母的含量在9%~40%,并且在初糜棱岩、无矿糜棱岩、含矿糜棱岩、无矿超糜棱岩、含矿超糜棱岩中含量呈现出逐渐递增的趋势。白(绢)云母主要为2M1型,b0值分布在0.55505~0.99002 nm之间,在初糜棱岩、无矿糜棱岩和无矿超糜棱岩中逐渐增高,分别形成在低压、中压和高压环境。可见,从初糜棱岩到超糜棱岩,随着变形强度的增加,热液活动也随之增强,从而新生成了大量白(绢)云母。然而,在含矿的糜棱岩和超糜棱岩中还存在一些低压白云母,推测其可能是在后期脆性裂隙中由于流体活动所新形成的。因此,成矿可能经历了两个阶段,即早期的韧性剪切变形阶段导致金的初步富集,后期叠加的脆性破裂阶段形成具有工业品位的矿体。另外,无矿超糜棱岩的石英含量(29.8%)明显低于糜棱岩(44.2%),推测在形成石英脉型矿体过程中,部分热液可能来自于其围岩超糜棱岩。因此,相对于初糜棱岩和糜棱岩,超糜棱岩中更有利于金矿的形成。  相似文献   
994.
阎春波  李姜丽  赵璧  程龙 《地质论评》2021,67(6):67112006-67112006
本文系统总结了湖北宜昌地区省级及省级以上地质遗迹资源,认为该地区地质遗迹分布规律主要可概括为两个方面,一是受控于地形和河流的综合作用,以各类地貌景观遗迹为特点;二是各个地质时代地层剖面齐全,古生物化石产地聚集。其中可归类为世界级地质遗迹点为5个,均以“古生物化石”为核心,分别为三峡地区埃迪卡拉生物群、长阳寒武纪清江生物群、黄花场中奥陶统大坪阶“金钉子”、王家湾上奥陶统赫南特阶“金钉子”和远安三叠系南漳—远安动物群。立足于此,文中首次详细总结了这些地质遗迹点的化石代表、科学及科普意义,并从地质遗迹自身保护和应用方式、地质遗迹载体、地学研学、地质文化的传播和文创科普产品5个方面对古生物地质遗迹资源的发展模式进行了详细探讨,从而为宜昌地区全域地质遗迹开发和旅游提供新思路。  相似文献   
995.
福建省地热资源主要以中低温水热系统为主,对于其中深部的控热过程及条件目前还存在认识上的不足。本次研究综合重力及广域电磁法对研究区的断层及凹陷进行了详细的勘测和解译,推测出5条主断裂和10条次级断裂,并划定出凹陷区的分布范围。泉州官桥地区的对流型地热资源是储热岩体、导热断层和保热盖层的“三元”聚热模式。根据该聚热模式,一级断裂F31与F8的交汇部位可圈定为一级地热勘探靶区,GQ-F2与GQ-F3和GQ-F4、GQ-F7与F29、F1与F30、GQ-F10与GQ-F11的交汇部位可圈定为二级地热勘探靶区。在一级地热勘探靶区内布设的DR02孔显示,0~300m深度水温增速由快至慢,300m深度以下温度稳定在48℃。利用地热验证钻孔检验了聚热模式及圈定靶区的可靠性,这对于泉州官桥地区的地热资源开发利用具有重要意义。  相似文献   
996.
刘江斌 《地质与勘探》2021,57(1):231-240
山2段是鄂尔多斯盆地延安地区致密砂岩气生产的重要层段,目前对其流体赋存规律认识明显不足。因此在铸体薄片、扫描电镜、X射线衍射、高压压汞、恒速压汞、核磁共振测试的基础上,分析该储层可动流体的赋存特征及其影响因素。结果表明:山2储层主要为岩屑石英砂岩和岩屑砂岩,溶蚀孔和晶间孔为主要储集空间,粒间溶孔显著发育。山2储层可动流体饱和度为34.74%~91.83%,平均为69.94%,T2谱多为双峰态,呈左低右高型。储层孔隙度、渗透率、孔隙类型、孔喉特征及胶结物影响可动流体饱和度。孔隙为可动流体提供主要空间,平均孔隙半径越大,平均喉道半径越大,孔喉比越小,可动流体饱和度越高。硅质含量越高,粒间孔保存越好,可动流体饱和度越高。铁方解石含量越高,孔隙破坏越明显,可动流体饱和越低。高岭石含量较高,长石溶孔及晶间孔发育较好,有利于流体流动,可动流体饱和度也较高。  相似文献   
997.
王静 《地质与勘探》2021,57(2):450-456
页岩气储层孔隙结构是页岩气富集成藏、储层评价和优选有利区的关键参数,区分孔隙和喉道是表征页岩气储层孔隙结构的关键。本文选择4块具有不同渗透率的湘西北地区奥陶系五峰组页岩为研究对象,基于恒速压汞实验讨论孔隙和喉道的大小、分布特征及其相互关系以及与渗透率的联系。结果表明:具有不同渗透率的页岩样品表现为较为相近的孔径分布特征但差异较大的喉道分布特征。页岩样品渗透率的大小与孔隙半径没有明显相关关系;喉道大小及其分布特征是控制低渗储层孔隙结构的关键要素之一。渗透率较低页岩样品的喉道以喉道半径小且集中分布为特征,而渗透率较大页岩样品的喉道以喉道半径大呈分散分布但主要以大喉道为特征。喉道特征是研究页岩气储层储集空间和吸附能力的重要部分,在以后对页岩气的勘探开发中应特别注意及重视。  相似文献   
998.
通过对河北省张家口下花园区夏家沟古城梁、怀来县赵家山等剖面地质测量,分析了1400 Ma前沉积的下马岭组岩性变化、沉积序列与海平面升降演化、岩石矿物组分与重矿物组合,认为下马岭组沉积时期发育温暖湿润的气候条件及多期热带风暴作用,早期的大规模风暴与浊流等事件沉积,晚期的浅海陆棚风暴岩、深水陆棚泥页岩、细粒浊积岩及安静水体的泥灰岩透镜体(灰泥饼)等是其鲜明的沉积响应.该时期发育一次长期缓慢的海平面上升-下降过程,对应一个二级层序.内幕可细分为五次海平面升降变化,对应五个三级层序;下马岭组沉积早期的物质组分主要以砂质、泥质为主,晚期转化为以泥质、灰质、云质为主,砂质减少,两种类型的物质组合系统先后影响燕辽裂陷槽;下马岭组沉积时期,具有双物源性质,除了主要来自于东部的山海关古隆起外,晚期可能也有西部山西古陆提供物源,来自北部的沉积物源不发育,推测北部的内蒙-冀北隆起(内蒙地轴)不存在,燕辽盆地具有西陡东缓的箕状断陷盆地特征,盆地古地形、物源供给变化与多级次海平面振荡变化控制了下马岭组沉积物的时空演化特征.该研究为1400 Ma前华北克拉通北部燕辽盆地岩相古地理的恢复提供了重要参考.  相似文献   
999.
中更新世气候转型(MPT)是第四纪环境变化的一个重要时期,该时期气候模式、气候周期等均发生了明显变化,然而不同区域对中更新世气候转型的响应特征存在明显差异.本研究选取了长治盆地XZK4钻孔中更新世转型前后(1.8~0.1 Ma)共207个样品,通过古地磁定年,运用粒度端元分析和孢粉分析,阐述了长治盆地中更新世转型期的环境变化与湖泊演化特征.结果显示,1.8 Ma以来,孢粉组合中乔木花粉含量多高于60%,但个别时段草本植物花粉占优,显示区域植被多数阶段为森林,但存在明显冷期,并且1.1 Ma和0.55 Ma是研究区环境转变的重要转折点.中更新世转型期前(~1.1 Ma):沉积物粒度总体较细,黏土含量多高于25%,EM1组分(湖相沉积)多高于60%,EM3(河流相组分)在个别时段出现,总体显示该阶段沉积物组成以湖相沉积为主,个别阶段受到河流影响大;中更新世转型时期(1.1~0.55 Ma):沉积物粒度较上一阶段更细,黏土含量(平均为30%)、EM1占比和孢粉浓度均达到研究段最高,沉积物颜色以棕灰色为主,EM3组分占比降至最低,其中1.1~0.95 Ma喜冷的云杉属花粉出现,显示该时期研究区气候总体偏冷湿,湖泊面积较1.1 Ma之前扩大;中更新世转型后(~0.55 Ma):沉积物粒度明显变粗,达到钻孔最高值,沉积物颜色变黄,EM2(风成组分)和EM3占主导,草本植物含量增加,尤其是喜干的蒿属花粉增加明显,表明气候较之前变干,沉积物类型以风力沉积为主,湖泊消亡.综合对比显示,构造运动是影响长治古湖消长的主要驱动力,气候变干加剧了湖泊消亡.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号