首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   14篇
  国内免费   21篇
大气科学   7篇
地球物理   32篇
地质学   69篇
海洋学   10篇
综合类   12篇
自然地理   16篇
  2022年   4篇
  2021年   7篇
  2020年   7篇
  2019年   4篇
  2018年   3篇
  2017年   5篇
  2016年   8篇
  2015年   7篇
  2014年   9篇
  2013年   8篇
  2012年   7篇
  2011年   2篇
  2010年   3篇
  2009年   5篇
  2008年   5篇
  2007年   10篇
  2006年   2篇
  2005年   5篇
  2004年   8篇
  2003年   5篇
  2002年   8篇
  2001年   1篇
  2000年   12篇
  1999年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有146条查询结果,搜索用时 139 毫秒
51.
The occurrence of the genus Aquilapollenites in Upper Cretaceous and Neogene sediments of northwestern Pakistan is reported here. Aquilapollenites amplus, Aquilapollenites reductus, and Aquilapollenites sp. occur in the Maastrichtian palynomorph assemblage from an outcrop sample of the Mir Ali section, northern Waziristan. Aquilapollenites medeis in the Neogene Murgha Faqir Zai Formation of the Pishin Basin, Balochistan, is considered a reworked Cretaceous specimen. The Upper Cretaceous sediments of the Asian plate on the Tethys margin are considered to be the source of Aquilapollenites spp. in these samples.  相似文献   
52.
Deforestation in the Himalayas is generally seen as caused primarily by population growth. Based on interviews and the analysis of satellite images, we critically examine this view using Basho Valley in the Western Himalayas of Pakistan as a case study. Our findings indicate that the forest of Basho has been reduced by at least 50% after the valley was opened up through the construction of a link road in 1968. Large-scale legal and illegal commercial harvesting was carried out after the construction of the road. While legal commercial harvesting was stopped in 1987, illegal harvesting has since continued with the involvement of the Forest Department. The findings of this study do not support theories in which deforestation is attributed to rapid population growth. Instead, mismanagement and illegal commercial harvesting endorsed by the Forest Department have been the main causes of deforestation in Basho Valley.  相似文献   
53.
In NW Himalayas, the suture zone between the collided Indian and the Karakoram plates is occupied by crust of the Cretaceous Kohistan Island\|Arc Terrane [1] . Late Cretaceous (about 90Ma) accretion with the southern margin of the Karakoram Plate at the site of the Shyok Suture Zone turned Kohistan to become an Andean\|type margin. The Neotethys was completely subducted at the southern margin of Kohistan by Early Tertiary, leading to collision between Kohistan and continental crust of the Indian plate at the site of the Main mantle thrust.More than 80% of the Kohistan terrane comprises plutonic rocks of (1) ultramafic to gabbroic composition forming the basal crust of the intra\|oceanic stage of the island arc, and (2) tonalite\|granodiorite\|granite composition belong to the Kohistan Batholith occupying much of the intermediate to shallow crust of the terrane mostly intruded in the Andean\|type margin stage [2] . Both these stages of subduction\|related magmatism were associated with volcanic and sedimentary rocks formed in Late Cretaceous and Early Tertiary basins. This study addresses tectonic configuration of Early Tertiary Drosh basin exposed in NW parts of the Kohistan terrane, immediately to the south of the Shyok Suture Zone.  相似文献   
54.
MASS MOVEMENT AND LANDSLIDE HAZARD, MURREE AREA, NORTH PAKISTAN  相似文献   
55.
The Late Permian succession of the Upper Indus Basin in northeastern Pakistan is represented by the carbonate-dominated Zaluch Group, which consists of the Amb, Wargal and Chhidru formations, which accumulated on the southwestern shelf of the Paleo-Tethys Ocean, north of the hydrocarbon-producing Permian strata of the Arabian Peninsula. The reservoir properties of the mixed clastic-carbonate Chhidru Formation (CFm) are evaluated based on petrography, using scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX) and x-ray diffraction (XRD) techniques. The diagenetic features are recognized, ranging from marine (isopachous fibrous calcite, micrite), through meteoric (blocky calcite-I, neomorphism and dissolution) to burial (poikilotopic cement, blocky calcite-II-III, fractures, fracture-filling, and stylolites). Major porosity types include fracture and moldic, while inter- and intra-particle porosities also exist. Observed visual porosity ranges from 1.5%–7.14% with an average of 5.15%. The sandstone facies (CMF-4) has the highest average porosity of 10.7%, whereas the siliciclastic grainstone microfacies (CMF-3) shows an average porosity of 5.3%. The siliciclastic mudstone microfacies (CMF-1) and siliciclastic wacke-packestone microfacies (CMF-2) show the lowest porosities of 4.8% and 5.0%, respectively. Diagenetic processes like cementation, neomorphism, stylolitization and compaction have reduced the primary porosities; however, processes of dissolution and fracturing have produced secondary porosity. On average, the CFm in the Nammal Gorge, Salt Range shows promise and at Gula Khel Gorge, Trans-Indus, the lowest porosity.  相似文献   
56.
The site of Mansehra is located seismically in an active regime, known as the Crystalline Nappe Zone and Hazara-Kashmir Syntaxis in NW Himalayas, Pakistan. Seismic Hazard Assessment (SHA) for the site has been carried out by considering the earthquake source zones, selection of appropriate attenuation equations, near fault effects and maximum potential magnitude estimation. The Mansehra Thrust, Oghi Fault, Banna Thrust, Balakot Shear Zone, Main Boundary Thrust, Panjal Thrust, Jhelum Fault and Muzaffarabad Fault and, further to the south, the Sanghargali, Nathiagali, and Thandiani Thrusts are the most critical tectonic features within the 50 km radius of Mansehra. Using the available instrumental seismological data from 1904 to 2007, SHA has been carried out. Other reactivated critical tectonic features in the area have been investigated. Among them the Balakot-Bagh fault, with the fault length of 120 km from Balakot to Poonch, has been considered as the most critical tectonic feature on the basis of geological/structural/seismological data. The potential earthquake of maximum magnitude 7.8 has been assigned to the Balakot-Bagh fault using four regression relations. The peak ground acceleration value of 0.25 g (10% probability of exceedance for 50 years) and 0.5 g has been calculated with the help of the attenuation equation using probabilistic and deterministic approaches.  相似文献   
57.
《International Geology Review》2012,54(11):1391-1408
ABSTRACT

Rocks of the early Neoproterozoic age of the world have remained in discussion for their unique identity and evolutionary history. The rocks are also present in Sindh province of Pakistan and have been in debate for a couple of years. Yet, these igneous rocks have been studied very poorly regarding U-Pb and Lu-Hf age dating. The early Neoproterozoic rocks located in Nagarparkar town of Sindh have been considered as shoulder of Malani Igneous Suite (MIS) discovered in Southwest of India. The Nagarparkar Igneous Complex (NPIC) rocks are low-grade metamorphosed, mafic and silicic rocks. These rocks are accompanied by felsic and mafic dikes. Two types of granite from NPIC have been identified as peraluminous I-type biotite granites (Bt-granites), of medium-K calc-alkaline rocks series and A-type potash granites (Kfs-granites) of high-K calc-alkaline rocks series. Geochemical study shows that these Kfs-granites are relatively high in K and Na contents and low MgO and CaO. The Bt-granites have positive Rb, Ba, and Sr with negative Eu anomalies rich with HFSEs Zr, Hf, and slightly depleted HREEs, whereas Kfs-granites have positive Rb with negative Ba, Sr, and Eu anomalies and have positive anomalies of Zr and Hf with HREEs. In addition, these rocks possess crustal material, which leads to the enrichment of some incompatible trace elements and depletion of Sr and Ba in Kfs-granites and relatively high Sr and Ba in Bt-granites, indicating a juvenile lower continental crust affinity. Zircon LA-ICP-MS U-Pb dating of these granites yielded weighted mean 206Pb/238U ages ranging from 812.3 ± 14.1 Ma (N = 18; MSWD = 3.7); and 810 ± 7.4 Ma (N = 16; MSDW = 0.36) for the Bt-granites, and 755.3 ± 7.1 Ma (N = 21; MSDW = 2.0); NP-GG-01 and 736.3 ± 4.3 Ma (N = 24; MSWD = 1.05) for Kfs-granites, respectively. The Bt-granites and Kfs-granites have positive zircon εHf(t) values, which specify that they are derived from a juvenile upper and lower continental crust. Based on the geochemical and geochronological data, we suggest that the Bt-granites were formed through lower continental crust earlier to the rifting time, whereas the Kfs-granites were formed via upper continental crust, during crustal thinning caused by Rodinia rifting. These zircon U-Pb ages 812 to 736 Ma, petrographic, and geochemical characteristics match with those of the adjacent Siwana, Jalore, Mount Abu, and Sirohi granites of MIS. Thus, we can suggest that NPIC granites and adjacent MIS can possibly be assumed as a missing link of the supercontinent Rodinia remnants.  相似文献   
58.
The catch and effort data of Sillago sihama fishery in Pakistani waters were used to investigate the performance of two closely related stock assessment models: logistic and generalized surplus-production models. Compared with the generalized production model, the logistic model produced more reasonable estimates for parameters such as maximum sustainable yield. The Akaike’s Information Criterion values estimated at 4.265 and -51.152 respectively by the logistic and generalized models. Simulation analyses of the S. sihama fishery showed that the estimated and observed abundance indices for the logistic model were closer than those for the generalized production model. Standardized residuals were distributed closer for logistic model, but exhibited a slightly increasing trend for the generalized model. Statistical outliers were seen in 1989 and 1993 for the logistic model, and in 1981 and 1999 for the generalized model. Simulated results revealed that the logistic estimates were close to the true value for low CVs (coefficients of variation) but widely dispersed for high CVs. In contrast, the generalized model estimates were loose for all CV levels. The estimated production model curve parameter was not reasonable at all the tested levels of white noise. With the increase in white noise R2 for the catch per unit effort decreased. Therefore, we conclude that the logistic model performs more reasonably than the generalized production model.  相似文献   
59.
2013年9月24日巴基斯坦中南部发生Mw7.7地震,震中位于巴基斯坦阿瓦兰县北部69 km处,发震断层为走滑断层机制,极震区烈度达到Ⅸ度以上.我们计算了巴基斯坦地震的视应力、应力降等震源参数,明确该地震为断层动态摩擦过程中的应力上调模式;进一步选取发震断层面上滑动位移的反演结果,构建有限断层模型,对近断层区域的强地面运动进行估算,并基于强地面运动模拟结果给出震区的烈度分布图.结果显示,模拟的巴基斯坦地震烈度图极震区烈度达到Ⅸ度,Ⅶ度烈度影响范围与美国地质调查局震后给出的震动图(ShakeMap)较为一致.强烈地震发生后,基于强地面运动模拟计算给出的烈度分布情况具备较好的合理性,对震区给出及时的震情判定和开展相应的救灾工作具有较高的实际价值.  相似文献   
60.
The Upper Carboniferous—Lower Permian(Upper Pennsylvanian-Asselian) Tobra Formation is exposed in the Salt and Trans Indus ranges of Pakistan.The formation exhibits an alluvial plain(alluvial fan-piedmont alluvial plain) facies association in the Salt Range and Khisor Range.In addition,a stream flow facies association is restricted to the eastern Salt Range.The alluvial plain facies association is comprised of clast-supported massive conglomerate(Gmc),diamictite(Dm)facies,and massive sandstone(Sm) Hthofacies whereas the stream flow-dominated alluvial plain facies association includes fine-grained sandstone and siltstone(Fss),fining upwards pebbly sandstone(Sf),and massive mudstone(Fm) Hthofacies.The lack of glacial signatures(particularly glacial grooves and striatums) in the deposits in the Tobra Formation,which are,in contrast,present in their timeequivalent and palaeogeographically nearby strata of the Arabian peninsula,e.g.the AI Khlata Formation of Oman and Unayzah B member of the Saudi Arabia,suggests a pro-to periglacial,i.e.glaciofluvial depositional setting for the Tobra Formation.The sedimentology of the Tobra Formation attests that the Salt Range,Pakistan,occupied a palaeogeographic position just beyond the maximum glacial extent during Upper Pennsylvanian-Asselian time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号