首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1594篇
  免费   142篇
  国内免费   307篇
测绘学   17篇
大气科学   306篇
地球物理   383篇
地质学   782篇
海洋学   356篇
天文学   54篇
综合类   21篇
自然地理   124篇
  2024年   5篇
  2023年   18篇
  2022年   50篇
  2021年   46篇
  2020年   37篇
  2019年   52篇
  2018年   39篇
  2017年   89篇
  2016年   84篇
  2015年   83篇
  2014年   108篇
  2013年   108篇
  2012年   39篇
  2011年   111篇
  2010年   65篇
  2009年   141篇
  2008年   141篇
  2007年   105篇
  2006年   101篇
  2005年   81篇
  2004年   66篇
  2003年   49篇
  2002年   52篇
  2001年   42篇
  2000年   60篇
  1999年   49篇
  1998年   36篇
  1997年   39篇
  1996年   25篇
  1995年   19篇
  1994年   20篇
  1993年   17篇
  1992年   9篇
  1991年   4篇
  1990年   7篇
  1989年   5篇
  1988年   7篇
  1987年   3篇
  1986年   8篇
  1985年   9篇
  1984年   3篇
  1983年   5篇
  1981年   1篇
  1978年   5篇
排序方式: 共有2043条查询结果,搜索用时 31 毫秒
31.
Dissolved and particulate concentrations of the biogenic thiols cysteine (Cys), arginine–cysteine (Arg–Cys), glutamine–cysteine (Gln–Cys), γ-glutamate–cysteine (γ-Glu–Cys) and glutathione (GSH) were measured in the subartic Pacific Ocean in the summer of 2003 using high performance liquid chromatography (HPLC) with precolumn derivatization as reported in previous work. In this study, a preconcentration protocol for the derivatized thiols was utilized to extend detection limits of dissolved thiols to picomolar levels. The measured concentrations of particulate and dissolved thiols were uncoupled, with distinctive depth profiles and large differences in the particulate to dissolved ratios between individual compounds. Glutathione was the most abundant particulate thiol whereas the most abundant dissolved thiol was γ-Glu–Cys, with concentrations as high as 15 nM. Given the relatively small pool of intracellular γ-Glu–Cys and the very low dissolved concentrations of GSH, we hypothesize that glutathione released from cells is rapidly converted to the potentially degradation resistant γ-Glu–Cys outside the cell. The relatively high concentrations of other dissolved thiols compared to particulate concentrations implies both biological exudation and slow degradation rates. Some thiols appear to vary with changes in nutrient availability but this effect is difficult to decouple from changes in community structure inferred from pigment analyses. Dissolved thiol concentrations also exceed typical metal concentrations in the subartic Pacific, supporting previous arguments that they may be important in metal speciation.  相似文献   
32.
The coastline near Chañaral in Northern Chile is one of the most highly Cu-contaminated zones in the world due to discharges from mining activities for more than 60 years. The speciation of Cu has been studied to determine the importance of organic complexation in highly contaminated areas, and to assess the likely physiological impacts of Cu on marine organisms. Dissolved Cu concentrations of up to 500 nM were measured, completely saturating organic ligands and leading to free Cu2+ concentrations in excess of 10− 8 M. These values are higher than those reported in any other marine environment, and because they occur over an extensive area, provide a unique opportunity to study the effects of Cu on marine ecosystems and to see how Cu behaves when its speciation is predominantly inorganic. We found strong gradients in free Cu2+ between Chañaral and adjacent areas with lower Cu, where speciation is dominated by organic complexation. There is also a significant increase in the partitioning of Cu onto suspended particles in the contaminated areas, consistent with previous studies that showed that organic ligands stabilize Cu in the dissolved phase, whilst “excess” Cu is rapidly scavenged. Those high dissolved Cu concentrations persist in spite of solid phase partitioning and advective processes along this open-ocean coastline, suggesting that Cu inputs into the system are still very large. Measurements were made using anodic stripping voltammetry with a thin mercury film coated with Nafion, which previous workers have shown can mitigate ambiguity in the data arising from inadvertent reduction of organic complexes. Our findings suggest that this is a useful methodology for contaminated systems.  相似文献   
33.
In this study, we present seasonal changes (monthly samples from September 2001 to August 2003) in the abundance and composition of dissolved and particulate amino acids, at one station in the lower Mississippi and Pearl Rivers (LA, MS: USA). Spatial changes over a 4-day transmit from river km 390 to river mouth (Head of Passes, LA) in the Mississippi River, and a two-day downstream sampling from Jackson (MS) to Stennis Space Center (MS) were also determined. Temporal data in the lower Mississippi River showed significantly lower concentrations of dissolved combined amino acids (DCAA, 0.8 to 2.2 μM) and dissolved amino acids in high molecular weight fraction (HMW DAA, 0.2–0.4 μM) than in the Pearl River (DCAA, 1.4–4.3 μM; HMW DAA, 0.4–1.4 μM). Dissolved free amino acids (DFAA) were significantly lower than DCAA in both rivers, and displayed minimal seasonal variability. DCAA, HMW DAA, and particulate amino acids (PAA) were generally higher during high-flow periods, which may have suggested dominance in terrestrial sources. Carbon-normalized yield of PAA (%C-PAA) was generally higher during low-flow conditions and positively correlated with chlorophyll-a (chl-a), reflective of in situ sources. Downstream variability in the lower Mississippi River showed stable DCAA concentrations, a decline in PAA (from 1.06 to 0.43 μM), and a gradual increase in mole percent of non-protein amino acids (%NPAA). This likely reflected bacterial degradation of phytoplankton biomass during falling discharge. Nitrogen-normalized yield of PAA (%N-PAA) was inversely correlated with PAA (R = − 0.7, n = 48), indicative of short-term sedimentation and resuspension events. Conversely, downstream decreases in DCAA and middle-reach peaks of PAA and %N-PAA in the Pearl River, likely resulted from photochemical degradation of DOM as well as algal production during base-flow conditions. The comparisons in abundance and composition of DAA and PAA in these different river systems provides important information on in situ nitrogen and carbon cycling as related to riverine inputs of organic matter to coastal ocean.  相似文献   
34.
Intense studies of upper and deep ocean processes were carried out in the Northwestern Indian Ocean (Arabian Sea) within the framework of JGOFS and related projects in order to improve our understanding of the marine carbon cycle and the ocean’s role as a reservoir for atmospheric CO2. The results show a pronounced monsoon-driven seasonality with enhanced organic carbon fluxes into the deep-sea during the SW Monsoon and during the early and late NE Monsoon north of 10°N. The productivity is mainly regulated by inputs of nutrients from subsurface waters into the euphotic zone via upwelling and mixed layer-deepening. Deep mixing introduces light limitation by carrying photoautotrophic organisms below the euphotic zone during the peak of the NE Monsoon. Nevertheless, deep mixing and strong upwelling during the SW Monsoon provide an ecological advantage for diatoms over other photoautotrophic organisms by increasing the silica concentrations in the euphotic zone. When silica concentrations fall below 2 μmol l−1, diatoms lose their dominance in the plankton community. During diatom-dominated blooms, the biological pathway of uptake of CO2 (the biological pump) appears to be more efficient than during blooms of other organisms, as indicated by organic carbon to carbonate carbon (rain) ratios. Due to the seasonal alternation of diatom and non-diatom dominated exports, spatial variations of the annual mean rain ratios are hardly discernible along the main JGOFS transect.Data-based estimates of the annual mean impact of the biological pump on the fCO2 in the surface water suggest that the biological pump reduces the increase of fCO2 in the surface water caused by intrusion of CO2-enriched subsurface water by 50–70%. The remaining 30 to 50% are attributed to CO2 emissions into the atmosphere. Rain ratios up to 60% higher in river-influenced areas off Pakistan and in the Bay of Bengal than in the open Arabian Sea imply that riverine silica inputs can further enhance the impact of the biological pump on the fCO2 in the surface water by supporting diatom blooms. Consequently, it is assumed that reduced river discharges caused by the damming of major rivers increase CO2 emission by lowering silica inputs to the Arabian Sea; this mechanism probably operates in other regions of the world ocean also.  相似文献   
35.
The Atacama trench, the deepest ecosystem of the southern Pacific Ocean (ca. 8000 m depth) was investigated during the Atacama Trench International Expedition. Sediments, collected at three bathyal stations (1040–1355 m depth) and at a hadal site (7800 m) were analyzed for organic matter quantity and biochemical composition (in terms of phytopigments, proteins, carbohydrates and lipids), bacterial abundance, biomass and carbon production and extracellular enzymatic activities. Functional chlorophyll-a (18.0±0.10 mg m−2), phytodetritus (322.2 mg m−2) and labile organic carbon (16.9±4.3 g C m−2) deposited on surface sediments at hadal depth (7800 m) reached concentrations similar to those encountered in highly productive shallow coastal areas. High values of bacterial C production and aminopeptidase activity were also measured (at in situ temperature and 1 atm). The chemical analyses of the Atacama hadal sediments indicate that this trench behaves as a deep oceanic trap for organic material. We hypothesize that, despite the extreme physical conditions, benthic microbial processes might be accelerated as a result of the organic enrichment.  相似文献   
36.
In order to assess the impact of deep-sea mining on the in situ benthic life, we measured the microbial standing stock and concentration of organic nutrients in the deep-sea sediments of the Central Indian Ocean Basin in the Indian pioneer area. Sediments were collected using box core and grab samples during September 1996. The total bacterial numbers ranged from 10 10 -10 11 cells per g -1 dry weight sediment. There was a marginal decrease in the number of bacteria from surface to 30 cm depth, though the subsurface section registered a higher number than did the surface. The highest numbers were encountered at depths of 4-8 cm. The retrievable number of bacteria were two orders less in comparison with the direct total counts of bacteria. An almost homogeneous distribution of bacteria, total organic carbon, living biomass, and lipids throughout the depth of cores indicates active microbial and benthic processes in the deep sea sediments. On the other hand, a uniform distribution of total counts of bacteria, carbohydrates, and total organic carbon in all the cores indicates their stable nature and suggests that they can serve as useful parameters for long-term monitoring of the area after the benthic disturbance. Further studies on temporal variability in this region would not only verify the observed norms of distribution of these variables but would also help to understand restabilization processes after the simulated benthic disturbance.  相似文献   
37.
李炎  G.W.Berger 《海洋科学》1992,16(4):66-68
利用颗粒态放射性核素携带的颗粒物历经过程信息,我们提出用泥沙扩散方程和颗粒态放射性核素扩散方程联解底部边界层颗粒态物质迁移参数的方法。分析实例的样品取自荷兰Waden Sea南部Balgzand潮滩(砂坪)和Mok湾潮滩(泥坪)的两个站位(BG1和Mok2)。示踪核素为~(234)Th,~(210)Pb和~(137)Cs,其放射性比度由r能谱测出。  相似文献   
38.
A new sample treatment was developed for the determination of dissolved cadmium in Tagus estuarine waters, based on focused ultrasound in conjunction with small volumes in the extraction steps for Cd pre-concentration. Cadmium was first pre-concentrated using a classical approach (APDC as the complexing agent and MIBK as the organic phase) and then back-extracted into HNO3 with the aid of focused ultrasound, which reduced the acid concentration by more than one order of magnitude (from 4 to 0.1 mol L− 3). This sample treatment was accomplished in less than 5 min, using low sample volume (20 mL), and low-volume, low-concentration reagents. The pre-concentration factor used in this work was 25, but different sample/organic volume ratios may be used in order to increase that value. The limit of detection and the limit of quantification in Tagus water samples were 0.03 nmol L− 1 and 0.1 nmol L− 3, respectively. Recoveries from spiked Tagus water were higher than 90%. The procedure was validated using the reference estuarine water NRC-SLEW-3. In the solubilization of Cd particulate, bath ultrasonication was used in conjunction with HNO3 + HCl, followed by H2O2, which took about 2 instead of the usual 12 h (cooling included) when high-pressure microwave digestion is used.  相似文献   
39.
Measurements of surface partial pressure of CO2 and water column alkalinity, pHT, nutrients, oxygen, fluorescence and hydrography were carried out, south of the Canary Islands during September 1998. Cyclonic and anticyclonic eddies were alternatively observed from the northwestern area to the central area of the Canary Islands. Nutrient pumping and vertical uplifting of the deep chlorophyll maximum by cyclonic eddies were also ascertained by upward displacement of dissolved inorganic carbon. A model was applied to determine the net inorganic carbon balance in the cyclonic eddy. The fluxes were determined considering both the diffusive and convective contributions from the upward pumping and the corresponding horizontal transport of water outside the area. An increase in the total inorganic carbon concentration in the upper layers inside the eddy field of 133 mmol C m− 2 d− 1 was determined. The upward flux of inorganic carbon decreased the effect of the increased primary production on the carbon dioxide chemistry. The reduced fCO2 inside the cyclonic eddy, 15 μatm lower than that observed in non-affected surface water, was explained by thermodynamic aspects, biological activity, eddy upward pumping and diffusion and air–sea water exchange effects.  相似文献   
40.
The common assumption that the ratio between particulate organic carbon (POC) and particulate 234Th obtained from shallow sediment traps and filterable particles are representative of the ratio in the total particle settling flux should be treated with caution in view of well-known biases associated with tethered shallow sediment traps and the decoupling between size and settling velocity of many natural particle regimes. To make progress toward reliably constraining the POC / 234Th ratio on truly settling particles, we have tested here a settling collection technique designed to remove any hydrodynamic bias; split flow-thin cell fractionation (SPLITT). These first results from a North Sea fjord and an open Baltic Sea time-series station indicates that the POC / 234Th ratio on the more complete particle-settling spectrum, isolated with SPLITT, was higher than the POC / 234Th ratio obtained simultaneously from tethered shallow sediment traps in seven out of seven parallel deployments with an average factor of 210%. The POC / 234Th ratio from the SPLITT was either in the same range or higher than that obtained on filtered “bulk” particles. To explain this novel data we hypothesize that the slowest settling fraction is organic-matter rich and does not strongly complex 234Th (i.e., high POC / 234Th). We suggest that this ultra-slow sinking fraction is better collected by SPLITT than with tethered sediment traps because of minimized hydrodynamic bias.This was tested using the ratio of POC / Al as a tracer of detrital mineral-ballast influenced settling velocity. The higher POC / Al ratios in SPLITT samples relative to in traps is consistent with the hypothesis that SPLITT is better suited for collecting also the slow-settling component of sinking particles. This important slow-settling component appears to here consist primarily of non-APS/TEP components of plankton exudates or other less-strongly 234Th-complexing organic matter. Further applications of the SPLITT technique are likely to return increasingly new insights on the composition (including “truly settling” POC / 234Th) of the total spectrum of particles settling out of the upper ocean.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号