首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3752篇
  免费   365篇
  国内免费   415篇
测绘学   100篇
大气科学   307篇
地球物理   1210篇
地质学   371篇
海洋学   1096篇
天文学   697篇
综合类   74篇
自然地理   677篇
  2024年   9篇
  2023年   30篇
  2022年   47篇
  2021年   47篇
  2020年   91篇
  2019年   106篇
  2018年   75篇
  2017年   98篇
  2016年   88篇
  2015年   100篇
  2014年   114篇
  2013年   203篇
  2012年   51篇
  2011年   131篇
  2010年   120篇
  2009年   231篇
  2008年   274篇
  2007年   316篇
  2006年   245篇
  2005年   185篇
  2004年   198篇
  2003年   210篇
  2002年   185篇
  2001年   136篇
  2000年   149篇
  1999年   165篇
  1998年   163篇
  1997年   81篇
  1996年   109篇
  1995年   81篇
  1994年   75篇
  1993年   71篇
  1992年   59篇
  1991年   55篇
  1990年   49篇
  1989年   42篇
  1988年   27篇
  1987年   25篇
  1986年   18篇
  1985年   13篇
  1984年   8篇
  1983年   5篇
  1982年   6篇
  1981年   3篇
  1980年   19篇
  1979年   3篇
  1978年   7篇
  1977年   5篇
  1954年   4篇
排序方式: 共有4532条查询结果,搜索用时 31 毫秒
101.
The sequence of sediment behaviour during wave-induced liquefaction   总被引:4,自引:0,他引:4  
This paper presents the results of an experimental investigation of the complete sequence of sediment behaviour beneath progressive waves. The sediment was silty with d 50 = 0.060 mm. Two kinds of measurements were carried out: pore-water pressure measurements (across the sediment depth), and water-surface elevation measurements. The process of liquefaction/compaction was videotaped from the side simultaneously with the pressure and water-surface elevation measurements. The video records were then analysed to measure: (i) the time development of the mudline, (ii) the time development of liquefaction and compaction fronts in the sediment and (iii) the characteristics of the orbital motion of the liquefied sediment including the motion of the interface between the water body and the sediment. The ranges of the various quantities in the tests were: wave height, H  = 9–17 cm, wave period, T  = 1.6 sec, water depth = 42 cm, and the Shields parameter = 0.34–0.59. The experiments reveal that, with the introduction of waves, excess pore pressure builds up, which is followed by liquefaction during which internal waves are experienced at the interface of the water body and the liquefied sediment, the sequence of processes known from a previous investigation. This sequence of processes is followed by dissipation of the accumulated excess pore pressure and compaction of the sediment which is followed by the formation of bed ripples. The present results regarding the dissipation and compaction appear to be in agreement with recent centrifuge wave-tank experiments. As for the final stage of the sequence of processes (formation of ripples), the ripple steepness (normalized with the angle of repose) for sediment with liquefaction history is found to be the same as that in sediment with no liquefaction history.  相似文献   
102.
We performed a series of laboratory experiments in which elastic waves were transmitted across a simulated fault. Two types of experiments were carried out: (1) Normal Stress Holding Test (NSHT): normal stress was kept constant for about 3 h without shear stress and transmission waves were observed. (2) Shear Stress Increasing Test (SSIT): shear stress was gradually increased until a stick-slip event occurred. Transmission waves were continuously observed throughout the process of stress accumulation. We focused on the change in transmission waves during the application of shear stress and especially during precursory slips.It was found in NSHT that the amplitude of transmission waves linearly increased with the logarithm of stationary contact time. The increase amounted to a few percent after about 3 h. Creep at asperity contacts is responsible for this phenomenon. From a theoretical consideration, it was concluded that the real contact area increased with the logarithm of stationary contact time.We observed in SSIT a significant increase in wave amplitude with shear stress application. This phenomenon cannot be attributed to the time effect observed in NSHT. Instead, it can be explained by the mechanism of “junction growth” proposed by Tabor. Junction growth yields an increase in real contact area. It is required for junction growth to occur that the material in contact is already plastic under a purely normal loading condition. A computer simulation confirmed that this requirement was satisfied in our experiments. We also found that the rate at which the amplitude increased was slightly reduced prior to a stick-slip event. The onset time of the reduction well coincides with the onset of precursory slip. The cause of the reduction is attributed to the reset of stationary contact time due to displacement. This interpretation is supported by the result of NSHT. Taking the time of stationary contact in SSIT into account, we may expect the change in wave amplitude to be, at most, only a few percent. The observed slight reduction in increasing rate is, in this sense, reasonable. The static stiffness of the fault also decreases with precursory slip. It was also found that low frequency waves are a better indicator of precursory slip than high frequency waves. This might suggest that low frequency waves with longer wavelength are a better indicator of average behavior of faults. The problem, however, merits a further investigation. The shifts in phase were also found to be a good indicator of the change in contact state of the fault. The changes in both amplitude and phase of transmission waves are unifyingly understood through the theory of transmission coefficient presented by Pyrak-Nolte et al. Rough surfaces have a tendency to give larger stick-slips than smooth surfaces. The amount of precursory slip is larger for rough surfaces than for smooth surfaces. Although it was confirmed by a computer simulation that rough surfaces have larger contact diameters than smooth surfaces, the rigorous relationship between the surface roughness (contact diameter) and the amount of precursory slips was not established.  相似文献   
103.
Estimating concentrations or flow rates along a stream network requires specific models. Two classes of models, recently proposed in the literature, are generalized, to the intrinsic case in particular. We present a global construction by ‘streams’, i.e. on the whole set of paths between sources and outlet. Combining stationary or intrinsic one-dimensional random functions leads to stationary or intrinsic models on segments, with discontinuities at the forks. A construction from outlet to sources, leads to stationary or intrinsic models on each stream, without any discontinuity at the forks. The linear variogram is found as a particular case. The extension to the linear model of coregionalization is immediate, allowing a multivariate modelling of concentrations. To cite this article: C. de Fouquet, C. Bernard-Michel, C. R. Geoscience 338 (2006).  相似文献   
104.
Rock fracturing by explosive energy: review of state-of-the-art   总被引:1,自引:0,他引:1  
A study of the dynamic rock fracture initiation and propagation due to explosive energy is presented through a detailed state-of-the-art review. Explosive energy dissipation in crushing and fracturing is examined and the various means to enhance the explosive energy utilization for dynamic rock fracturing are reviewed. The study highlights the need for a better understanding of the dynamic fracturing process particularly in the presence of in situ stresses in the rock mass.  相似文献   
105.
106.
107.
We present a stepwise inversion procedure to assess the focal depth and model earthquake source complexity of seven moderate-sized earthquakes  (6.2 > M w > 5.1)  that occurred in the Afar depression and the surrounding region. The Afar depression is a region of highly extended and intruded lithosphere, and zones of incipient seafloor spreading. A time-domain inversion of full moment tensor was performed to model direct P and SH waves of teleseismic data. Waveform inversion of the selected events estimated focal depths in the range of 17–22 km, deeper than previously published results. This suggests that the brittle–ductile transition zone beneath parts of the Afar depression extends more than 22 km. The effect of near-source velocity structure on the moment tensor elements was also investigated and was found to respond little to the models considered. Synthetic tests indicate that the size of the estimated, non-physical, non-isotropic source component is rather sensitive to incorrect depth estimation. The dominant double couple part of the moment tensor solutions for most of the events indicates that their occurrence is mainly due to shearing. Parameters associated with source directivity (rupture velocity and azimuth) were also investigated. Re-evaluation of the analysed events shows predominantly normal faulting consistent with the relative plate motions in the region.  相似文献   
108.
109.
110.
A general tomographic technique is designed in order (i) to operate in anisotropic media; (ii) to account for the uneven seismic sampling and (iii) to handle massive data sets in a reasonable computing time. One modus operandi to compute a 3-D body wave velocity model relies on surface wave phase velocity measurements. An intermediate step, shared by other approaches, consists in translating, for each period of a given mode branch, the phase velocities integrated along ray paths into local velocity perturbations. To this end, we develop a method, which accounts for the azimuthal anisotropy in its comprehensive form. The weakly non-linear forward problem allows to use a conjugate gradient optimization. The Earth's surface is regularly discretized and the partial derivatives are assigned to the individual grid points. Possible lack of lateral resolution, due to the inescapable uneven ray path coverage, is taken into account through the a priori covariances on parameters with laterally variable correlation lengths. This method allows to efficiently separate the 2ψ and the 4ψ anisotropic effects from the isotropic perturbations. Fundamental mode and overtone phase velocity maps, derived with real Rayleigh wave data sets, are presented and compared with previous maps. The isotropic models concur well with the results of Trampert & Woodhouse. Large 4ψ heterogeneities are located in the tectonically active regions and over the continental lithospheres such as North America, Antarctica or Australia. At various periods, a significant 4ψ signature is correlated with the Hawaii hotspot track. Finally, concurring with the conclusions of Trampert & Woodhouse, our phase velocity maps show that Rayleigh wave data sets do need both 2ψ and 4ψ anisotropic terms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号