首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   1篇
  国内免费   14篇
测绘学   7篇
地球物理   9篇
地质学   1篇
海洋学   35篇
天文学   1篇
综合类   1篇
自然地理   2篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2008年   6篇
  2007年   5篇
  2006年   7篇
  2005年   6篇
  2004年   5篇
  2002年   5篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
排序方式: 共有56条查询结果,搜索用时 453 毫秒
21.
由于多种原因 ,部分SeaWiFS卫星图像数据中存在比较严重的椒盐噪声。该文在分析SeaWiFS椒盐噪声特征的基础上提出一种基于窗口内均值与均方差比值序列差值的统计比值差值排序滤波器 (StatisticalRatioRankOrderedDifferencesFilter,SRROD) ,并讨论如何使用该滤波器技术有效地对椒盐噪声进行白点噪声、黑点噪声检测和消除。与常用的中值滤波和其他滤波器比较 ,该方法能在有效消除椒盐噪声的同时 ,保持图像数据中其他位置的点不受影响。通过灵活地调整不同的阈值可以获得不同的滤波效果。最后 ,讨论了如何从有效峰值信噪比 (EffectivePeakSignalNoiseRatio,EPSNR)分布图上提取最优阈值对的方法  相似文献   
22.
赵辉  唐丹玲  王素芬 《热带海洋学报》2005,24(6):31-37,T0001
南海生态动力学过程复杂,尤其是夏季,在东南季风的影响下,南海西部的上升流、西北部东北向的离岸流对该海区乃至整个南海生态动力学过程都有重要的影响。根据1999—2003年的SeaW-iFS卫星遥感叶绿素a浓度数据,结合2004年在南海北部海洋观测航次实测的叶绿素a浓度数据,分析了南海西北部夏季叶绿素a的分布特征;同时根据海表温度、风场、海面高度等卫星遥感历史资料,探讨了叶绿素a浓度的分布及其对环境因子的响应。结果表明,南海西北部夏季(6—8月)叶绿素a浓度的分布有显著的空间变化:在西部半径达500km低温、强风的半圆形海域范围叶绿素a浓度较高(>0.15mg.m-3),其中位于越南金兰湾东北部有一叶绿素a浓度更高的激流形带(>0.2mg.m-3);而在南海东北部夏季(6—8月)叶绿素a浓度明显偏低(<0.12mg.m-3)。叶绿素a的这种空间分布特征同季风等海洋环境因素之间有密切的关系。对比实测叶绿素a浓度显示,遥感叶绿素a浓度同实测叶绿素a浓度有很好的一致性。  相似文献   
23.
在卫星数据反演气溶胶光学厚度产品的基础上,讨论了二次反演大气柱中气溶胶粒子密度的问题.通过理论分析,利用多波段气溶胶光学厚度提取大气柱中气溶胶粒子密度是可行的,并指出能否准确确定多波段气溶胶光学厚度会直接影响粒子密度的反演结果.定义并分析了气溶胶粒子消光体积权重系数随粒子半径的变化,表明从气溶胶光学厚度中反演大气柱中气溶胶积聚模态和粗模态粒子密度的结果是可信的.利用SeaWiFS气溶胶光学厚度产品,运用蒙特卡罗法反演了2002年我国海域上空大气柱中积聚模态和粗模态气溶胶粒子密度,结果表明,积聚模态粒子密度比粗模态的高2~3个量级,它们的空间分布趋势一致;我国近岸海域大气柱中气溶胶粒子密度高于离岸海域的;春季气溶胶粒子密度高于其他季节的,特别在黄海、东海海区是如此.  相似文献   
24.
An optical model is developed for the remote sensing of coloured dissolved organic matter (CDOM) in a wide range of waters within coastal and open ocean environments. The absorption of CDOM (denoted as ag) is generally considered as an exponential form model, which has two important parameters – the slope S and absorption of CDOM at a reference wavelength ag(λ0). The empirical relationships for deriving these two parameters are established using in-situ bio-optical datasets. These relationships use the spectral remote sensing reflectance (Rrs) ratio at two wavelengths Rrs(670)/Rrs(490), which avoids the known atmospheric correction problems and is sensitive to CDOM absorption and chlorophyll in coastal/ocean waters. This ratio has tight relationships with ag(412) and ag(443) yielding correlation coefficients between 0.77 and 0.78. The new model, with the above parameterization applied to independent datasets (NOMAD SeaWiFS match-ups and Carder datasets), shows good retrievals of the ag(λ) with regression slopes close to unity, little bias and low mean relative and root mean square errors. These statistical estimates improve significantly over other inversion models (e.g., Linear Matrix-LM and Garver-Siegel-Maritorena-GSM semi-analytical models) when applied to the same datasets. These results demonstrate a good performance of the proposed model in both coastal and open ocean waters, which has the potential to improve our knowledge of the biogeochemical cycles and processes in these domains.  相似文献   
25.
Chlorophyll-a (chl-a) concentration has an important economic effect in coastal and marine environments on fisheries resources and marine aquaculture development. Monthly climatologies the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) derived chl-a from February 1998 to August 2004 around Funka Bay were used to investigate the spatial and temporal variability of chl-a concentrations. SeaWiFS-derived suspended sediment, MODIS derived sea surface temperature (SST), solar radiation and wind data were also analyzed. Results showed two distinct chlorophyll blooms in spring and autumn. Chl-a concentrations were relatively low (<0.3 mg m3) in the bay during summer, with high concentrations occurring along the coast, particularly near Yakumo and Shiraoi. In spring, chl-a concentrations increased, and a large (>2 mg m3) phytoplankton bloom occurred. The spatial and temporal patterns were further confirmed by empirical orthogonal function (EOF) analysis. About 83.94% of the variability could be explained by the first three modes. The first chl-a mode (77.93% of the total variance) explained the general seasonal cycle and quantified interannual variability in the bay. The spring condition was explained by the second mode (3.89% of the total variance), while the third mode (2.12% of the total variance) was associated with autumn condition. Local forcing such as the timing of intrusion of Oyashio water, wind condition and surface heating are the mechanisms that controlled the spatial and temporal variations of chlorophyll concentrations. Moreover, the variation of chlorophyll concentration along the coast seemed to be influenced by suspended sediment caused by resuspension or river discharge.  相似文献   
26.
River plumes have important effects on marine ecosystems. Variation in the extent and dispersal of river plumes is often associated with river discharge, wind characteristics and ocean circulation. The objectives of this study were to identify the Tokachi River plume by satellite, determine its relationship with river discharge and clarify its temporal and spatial dynamics. SeaWiFS multispectral satellite data (normalized water-leaving radiance: nLw) with 1.1 km spatial resolution were used to determine the spatial and temporal variability of the plume during 1998–2002. Supervised maximum likelihood classification using six channels of nLw at 412, 443, 490, 510, 555 and 670 nm with each band's spectral signature statistic was used to define classes of surface water and to estimate the plume area. Supervised maximum likelihood classification separated three to four classes of coastal water based on optical characteristics as a result of wind stress events. The satellite-observed plume area was correlated with the amount of river discharge from April to October. The plume distribution patterns were influenced by wind direction and magnitude, the occurrences of a near-shore eddy field and surface currents. Empirical orthogonal function (EOF) was used to express the spatial and temporal variability of the plume using anomalies of nLw(555) monthly averaged images. The first mode (44% of variance) showed the turbid plume distribution resulting from re-suspension by strong wind mixing along the coast during winter. This mode also showed the plume was distributed along-shelf direction in spring to early autumn. The second mode (17% of variance) showed spring pattern across-shelf direction. EOF analysis also explained the interannual variability of the plume signature, which might have been affected by the flow of the Oyashio Current and the occurrence of a near-shore eddy field.  相似文献   
27.
An important goal in ocean colour remote sensing is to accurately detect different phytoplank- ton groups with the potential uses including the validation of multi-phytoplankton carbon cycle models; synoptically monitoring the health of our oceans, and improving our understanding of the bio-geochemical interactions between phytoplankton and their environment. In this paper a new algorithm is developed for detecting three dominant phytoplankton size classes based on distinct differences in their optical signatures. The technique is validated against an independent cou- pled satellite reflectance and in situ pigment dataset and run on the 10-year NASA Sea viewing Wide Field of view Sensor (SeaWiFS) data series. Results indicate that on average 3.6% of the global oceanic surface layer is dominated by microplankton, 18.0% by nanoplankton and 78.4% by picoplankton. Results, however, are seen to vary depending on season and ocean basin.  相似文献   
28.
利用SeaWiFS及NOAA卫星资料,基于均值合成算法,分析了"百合"台风对海表温度(SST)、海表叶绿素a浓度及海水透明度的影响,结果表明,整个研究海域(22°~30°N、121°~131°E)的平均SST从台风前的25.48℃下降到22.45℃,平均下降幅度为12.95%.在台风盘旋的中心区域(26°~28°N、123°~127°E),SST平均下降了5.40℃,下降幅度达21.20%,SST下降最大的是9月14日,整个研究海域平均SST仅为13.48℃.整个研究海域海表叶绿素a浓度在台风期间有较大的增加,从台风前的0.425 mg/m3(平均值)上升到0.537 mg/m3,平均增长26.35%.除浙江近海外,台风核心区域海表叶绿素a浓度增幅最大,达1.695倍,表明台风风力越强,台风停留时间越长,对海表叶绿素a浓度增加的贡献就越大.这一增加有利于海洋生物的生长,有利于提高初级生产力和改善海洋生态环境.在"百合"台风期间,海水透明度却有一定程度的降低,从台风前的16.84 m(平均值)下降至台风后的12.67 m,平均降幅为24.76%,降幅最大的是24°~26°N、125°~127°E区块,平均下降了7.96 m,降幅高达47.6%;总体上台风核心区域南部的海水透明度降幅大于区域北部,台风核心区域东南部的海表叶绿素a浓度增幅大于区域东北部.同时,对整个研究海域分割成2°×2°大小的区块,以每个区块的海表叶绿素a浓度、SST和海水透明度的均值代表该区块的值,对台风前、后海表叶绿素a浓度、SST和海水透明度的变化进行相关性分析,发现海表叶绿素a浓度的变化与SST和海水透明度均呈负相关性,且台风期间海表叶绿素a浓度增加的百分比与相应区块海水透明度下降的百分比之间的相关系数达0.821.  相似文献   
29.
The variability of Chlorophyll-a (Chl-a) distribution derived from MODIS (on Aqua and Terra platforms) and MERIS sensors have been compared with SeaWiFS data in the Arabian Sea. MODIS Aqua has overestimated the SeaWiFS Chl-a within 25–32% in the coastal turbid (eutrophic) waters and underestimated in open ocean waters with error within 20%. However, there is no significant bias (?0.1 on log-scale) observed as the slope is well within 0.97-1.1 (log transformed). MODIS-Terra has underestimated the Chl-a concentration in open ocean waters by about 29–31%, which is higher than MODIS-Aqua. MODIS-Terra is observed to be more accurate than MODIS-Aqua in the coastal waters. MERIS is overestimating the SeaWiFS Chl-a with log RMS error of ~0.15 and log bias of ~0.13–0.2. The differences in the Chl-a estimates between each sensor are possibly due to differences in the sensor design, bio-optical algorithms and also due to the time differences between the satellites over passes. We have examined that the MERIS is performing similar to SeaWiFS and the MODIS-Aqua (Terra) data are reliable in open ocean (coastal) waters. However, Chl-a retrieval algorithms need to be improved especially for coastal turbid waters to continue with SeaWiFS data for long-term studies.  相似文献   
30.
The ultrasonic signals of dolphins show as “interference noise” on an echo‐sounder record. Some records obtained from Delphinus delphis in Hauraki Gulf, New Zealand, suggest that these emissions were being used for echo‐ranging, a phenomenon well established by previous work. Possible uses of such records in studying dolphin behaviour are explained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号