首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   71篇
  国内免费   43篇
测绘学   4篇
大气科学   3篇
地球物理   44篇
地质学   180篇
海洋学   66篇
综合类   14篇
自然地理   3篇
  2023年   2篇
  2022年   7篇
  2021年   8篇
  2020年   19篇
  2019年   19篇
  2018年   17篇
  2017年   46篇
  2016年   47篇
  2015年   21篇
  2014年   31篇
  2013年   17篇
  2012年   8篇
  2011年   9篇
  2010年   8篇
  2009年   6篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   6篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1978年   2篇
  1954年   2篇
排序方式: 共有314条查询结果,搜索用时 46 毫秒
11.
《China Geology》2018,1(3):346-353
There are plenty of Sinian and Cambrian potential shale gas resources in South China, which is characterized by high thermal evolution degrees, poor drilling performances and only occurs in local areas. Taking the principle “high to find low” is the key issue to achieving a breakthrough in older shale. China Geological Survey drilled in the periphery of the Proterozoic basement, i.e. the Huangling anticline, in the western Hubei, and Hannan paleocontinent in the southern Shanxi. It received high-quality gas-bearing shale with relatively low Ro in the in Lower Cambrian Niutitang formation and Sinian Doushantuo formation. Based on geological conditions of shale gas reservoirs in the Huangling anticline, this paper puts forward the new model named “Control over reservoirs by periphery of basement” about shale gas accumulation, suggesting that the shale deposited in a deepwater continental shelf in the periphery of the basement is characterized by shallow burial, a short burial time, stable tectonics, relatively low thermal evolution degrees, and shale gas reservoirs in a good condition. The shale of the Sinian-Cambrian strata deposited in deepwater continental shelves in the periphery of Chuanzhong paleo-uplift in Sichuan, Hannan paleocontinent in the southern Shanxi, Huangling anticline in western Hubei and Jiangnang-Xuefeng paleo-uplift in Hunan and Guizhou province have good shale gas exploration potential.  相似文献   
12.
Different from previous studies on effect of weathering upon geochemical variation along a single weathered profile, this paper provides a new methodology validated by comparing a weathered outcrop samples and their stratigraphic counterpart un-weathered core samples in a nearby shallow borehole. This outcrop and borehole penetrated the Ordovician-Silurian Wufeng–Longmaxi shales, located in the same anticline structure in the northern part of Guizhou Province, Southern China. The mineral composition, major, trace and rare earth elements (REEs) composition and Rock-Eval parameters of outcrop and core samples were analyzed and compared. Organic matter (OM) was observed in the microscope and extracted for elements analysis. The results show that short-term weathering still has significant influence on OM, mineral and elemental composition of black shales. The elements composition shows the outcrop profile was moderately weathered. The REEs compositions do not alter much during weathering process and the REEs composition and their relative ratios still are valid for rock origin determination. The OM, mainly composed by graptolite and bitumen, even entering the highly-over thermal maturity, is still sensitive to the weathering with a systematic loss 30–50% of TOC along the outcrop profile, which suggests that the OM consumption is predominantly controlled by weathering duration and the distance from the weathering surface. In turn, OM has significant influence on the trace elements transportation behavior during weathering. Some trace elements associated with the OM such as V, Cr, Th, U, Ni and Co, change significantly in their absolute concentration during weathering, but their relative ratios do not necessarily change too much and might be still reliable proxies for paleo-environmental determination. The mobility of shale minerals during weathering is in the following order: plagioclase?>?potassium feldspar and dolomite >pyrite and OM. Short-term weathering can also result in considerable transportation of elements and significant variation of minerals content in black shale, which may pose potentially high environmental and engineering risk in the regions rich in black shale.  相似文献   
13.
川东南丁山地区是近年来四川盆地页岩气勘探开发的热点区域,裂缝的发育对页岩含气性及保存条件有重要的影响。综合运用野外露头、岩心、测井资料,结合岩石脆性矿物含量、岩石力学参数等数据,深入分析龙马溪组页岩裂缝发育特征和控制因素,并探讨了裂缝发育对含气性的影响。结果表明,丁山地区龙马溪组页岩裂缝主要以构造成因的剪切缝为主,裂缝优势方位共6组,主要包括4组平面剪切缝和2组剖面剪切缝,其发育主要受2个方向、3个阶段的构造应力场影响而成;裂缝延伸稳定,平均密度小,宽度小,充填程度高,主要被方解石和黄铁矿等充填。裂缝受控因素主要包括古构造应力场、构造部位、脆性矿物组分、岩石力学性质等;断层对裂缝发育具有明显的控制作用,其中断层两盘均存在裂缝发育程度急剧下降的临界范围,临界范围内裂缝发育程度高,超过此临界范围,裂缝发育程度变差且变化趋于平缓;不同期次的裂缝中,形成时间晚、规模过大、充填程度不高、与现今地应力方向一致或呈低角度相交的裂缝易造成页岩气的散失,对提高页岩含气性不利;龙马溪组岩石脆性矿物含量高,脆性指数属中等偏上程度,有利于构造缝发育且可压性较好。随着距齐岳山断裂距离的适当增加,龙马溪组页岩埋藏深度适中,地层压力增大,抗压强度增强高,脆性指数适中,构造保存条件变好,有利于不同方位的裂缝发育和页岩含气量的增加,位于该区域的DY2井与DY4井均位于该有利区域,含气性良好。研究结果对下一步深化页岩气勘探开发具有重要指导作用。  相似文献   
14.
王彦飞  邹安祺 《岩石学报》2018,34(2):281-288
页岩气成藏机理与页岩内部孔隙结构紧密相关,对页岩孔隙结构的研究成为页岩气勘探开发技术中至关重要的一环。页岩内部不同结构体组分对X-射线的吸收能谱不一样,这样就导致观测数据是由不同页岩组分衰减不同波段的X-射线构成的。经过对CT图像分割,能够获得页岩微孔结构的图像,尤其是获得有机质中孔隙类别、形状、尺寸、空间分布、连通特性。本文利用同步辐射X射线扫描重构的页岩CT数据,研究并设计基于多能CT图像的神经网络图像分割技术和算法,以期得到页岩体三维结构特征及空间分布,可以为建立有机质种类和无机矿物组成与微纳孔隙特征的联系以及最终实现页岩气的资源储量评估和勘探开发提供技术支持。  相似文献   
15.
文章通过对河南中牟区块海陆过渡相太原组和山西组页岩气形成的地质条件与特征分析,认为区块构造较为简单、稳定,其海陆交互相沉积环境控制太原组和山西组页岩发育,分布广泛,富含有机质页岩厚度大,为页岩气目标层;有机碳含量w(TOC)=1.1%~3.7%,有机质类型为Ⅲ型,有机质成熟度指标镜质体反射率(Ro)3.0%~3.8%;目标层有效孔隙度1.0%~5.0%,黏土矿物以伊利石和伊/蒙混层为主;含气量0.5~3.3m~3/t,平均1.7m~3/t。对牟页1井太原组、山西组三段采用快钻桥塞分段压裂,累计注入压裂液量5 055.9m~3,加砂量202.7m~3,三层合采求产为1 256m~3/d,标志着南华北盆地海陆过渡相页岩气勘探取得重大发现。通过地质评价和资源量计算,中牟区块太原组、山西组页岩气地质资源量较为丰富,勘探有利区面积大,具备较好的页岩气勘探前景。  相似文献   
16.
Fine characterization of pore systems and heterogeneity of shale reservoirs are significant contents of shale gas reservoir physical property research.The research on micro-control factors of low productivity in the Qiongzhusi Formation(Fm.)is still controversial.The lower Cambrian Qiongzhusi Fm.in the Qujing,Yunnan was taken as the object to investigate the influence of mineral compositions on the phys-ical properties of the reservoir and the heterogeneity of shale,using the algorithm to improve the char-acterization ability of Atomic Force Microscopy(AFM).The results showed that:(1)The pores are mainly wedge-shaped pores and V-shaped pores.The pore diameter of the main pore segment ranges from 5 to 10 nm.Mesopores are mainly developed in the Qiongzhusi Fm.shale in Well QD1,with the average pore diameter of 6.08 nm.(2)Microscopic pore structure and shale surface properties show strong hetero-geneity,which complicates the micro-migration of shale gas and increases the difficulty of identifying high-quality reservoirs.(3)The increase of clay mineral content intensifies the compaction and then destroys the pores.Conversely,brittle minerals can protect pores.The support and protection of brittle minerals to pores space depend on their content,mechanical properties and diagenesis.(4)Compression damage to pores,large microscopic roughness and surface fluctuations and strong pore structure heterogeneity are the reasons for the poor gas storage capacity of the Qiongzhusi Fm.,which will lead to poor productivity in the Qiongzhusi Fm.  相似文献   
17.
Aromatic hydrocarbons from benzene extracts of New Albany Shale were characterized. A biomarker that has a molecular weight of 546 and a structural configuration consistent with that of an alkyl-aromatic hydrocarbon (C40H66) was tentatively identified. It was found that the relative concentrations of the biomarker are indicative of differing levels of thermal maturity of the shale organic matter. A 40-carbon bicyclic carotenoid (C40H48) is proposed as the geochemical precursor of this biomarker. Thermal maturity of the shale organic matter can also be differentiated by observing differences in “fingerprints” as obtained by field-ionization mass spectrometry on the aromatic hydrocarbon fraction. Using this technique, we found that the more mature shale samples from southeastern Illinois contain more low molecular weight extractable aromatic hydrocarbons and the less mature shale samples from northwestern Illinois contain more high molecular weight extractable aromatic hydrocarbons. It was demonstrated that field-ionization and tandem mass spectrometric techniques through fingerprint and individual compound identification, are useful for shale aromatic hydrocarbon fraction characterization and for thermal maturation interpretation.  相似文献   
18.
The significance and validity of integrating data obtained from a variety of analytical techniques to understand, elucidate and model kerogen's complex chemical structure is reported here using degradative (open and closed system pyrolysis, chemical oxidation), non-degradative (13C CP/MAS NMR) and optical (incident white light and blue light) methods. Seven Cambrian Alum Shale samples, ranging in maturity from immature to post-mature with respect to petroleum generation, were studied and were chosen for their simple geological history, uniform organic matter type and high organic carbon content. The Alum Shale kerogens, which primarily consist of algal organic matter, liberate low molecular weight gaseous and aromatic compounds on pyrolysis and give mostly branched dicarboxylic acids on chemical oxidation. 13C NMR spectroscopy shows that the Alum Shale kerogens are anomalously rich in oxygen-bearing functional groups (such as C = O, ArCO, CHO, CHxO), most of which apparently remain intact within the kerogen macro-molecule (KMM) through the diagenetic and catagenetic stages. Fragments released by different degradative techniques are quantified and the aromaticity (fa), O/C and relative proportions of various carbon types estimated by 13C NMR. A synthesis of these data has allowed us to better understand the chemistry of the Alum Shale kerogen.  相似文献   
19.
Creep,stable sliding,and premonitory slip   总被引:3,自引:0,他引:3  
Summary The current status of laboratory investigations into creep, stable sliding and premonitory slip is reviewed and some new material is presented. It is postulated that pre-cut rocks and those with simulated gouge layers undergo a transition with increasing confining pressure from (1) stable sliding to stick-slip, to (2) sliding along the pre-cut with deformation of the country rock, to (3) homogeneous flow of the specimen without slip along the pre-cut. Stick-slip behavior is not always present. Decreasing displacement rates are found to enhance stick-slip. Mixtures of gouge are found to be significant in controlling the behavior of sliding with 10–20 percent of anhydrite mixed with quartz or clays mixed with anhydrite shifting the sliding mode from stable stick-slip or stick-slip to stable sliding, respectively. Premonitory slip may be one of the most significant short term precursors of earthquakes. Although widely recognized in the laboratory, little systematic work has been completed. Variations in pore pressure, resistivity and seismic velocities have been investigated. Clearly much work needs to be done into these topics before a clear understanding is achieved.  相似文献   
20.
Geochemical studies of shale gas and conventional reservoirs within the Triassic Yanchang Formation of Xiasiwan and Yongning Field, Ordos Basin show that methane is isotopically depleted in 13C as compared to δ13C1 calculated by the Ro based on the relationship between δ13C1 and Ro. Geochemical fractionation during the adsorption/desorption process of shale system may play a significant part in influencing δ13C1 values of shale gas. Two shale core samples from confined coring of the Yanchang Formation were adopted segmented desorption experiments to examine this phenomenon. The results show that the δ13C1 of desorbed gas changes little in the first few phases of the experiments at low desorption levels, but become less negative rapidly when the fraction of desorbed methane exceeds 85%. The desorption process for the last 15% fraction of the methane from the shale samples shows a wide variation in δ13C1 from −49‰ to −33.9‰. Moreover, δ13C1 of all desorbed methane from the shale samples is substantially depleted in 13C than that calculated by Ro, according to Stahl and Carey's δ13C1–Ro equation for natural gas generated from sapropelic organic matter. This shows some gases with isotopically enriched in 13C cannot be desorbed under the temperature and pressure conditions of the desorption experiments. This observation may be the real reason for the δ13C1 of shale gases and conventional reservoirs becomes more negative in Xiasiwan and Yongning Fields, Ordos Basin. The magnitude of the deviation between the δ13C1 of shale gas and that calculated by Ro may be related to the adsorption capacity of shale or the proportion of absorbed gases. In this way, we may be able to evaluate the relative adsorption capacity of shale in geological conditions by δ13C1 of the shale gas, or by δ13C1 of conventional gas which generated by the shale with certainty. The δ13C1 of conventional gas in Dingbian and Yingwang Fields have no deviation because the TOC value of the hydrocarbon source rock is relatively low.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号