首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   19篇
  国内免费   21篇
测绘学   2篇
地球物理   61篇
地质学   79篇
海洋学   128篇
综合类   1篇
自然地理   3篇
  2023年   1篇
  2022年   5篇
  2021年   1篇
  2020年   8篇
  2019年   12篇
  2018年   4篇
  2017年   9篇
  2016年   5篇
  2015年   5篇
  2014年   12篇
  2013年   9篇
  2012年   2篇
  2011年   17篇
  2010年   10篇
  2009年   16篇
  2008年   38篇
  2007年   17篇
  2006年   14篇
  2005年   10篇
  2004年   7篇
  2003年   10篇
  2002年   10篇
  2001年   2篇
  2000年   6篇
  1999年   5篇
  1998年   7篇
  1997年   4篇
  1996年   9篇
  1995年   6篇
  1994年   2篇
  1993年   2篇
  1990年   2篇
  1989年   3篇
  1986年   1篇
  1984年   1篇
  1981年   1篇
  1954年   1篇
排序方式: 共有274条查询结果,搜索用时 93 毫秒
271.
The Snowdon caldera of North Wales is host to base metal sulfide-bearing veins and stockworks, mineralized breccias, disseminated sulfides, and localized zones of semi-massive to massive sulfide, with subordinate magnetite-rich veins. The late Ordovician host volcanic sequence accumulated in a shallow marine, back-arc environment in the Welsh Basin, which forms part of the Avalon Zone of the British and Irish Caledonides. New field evidence, sulfur isotopes, and U-Pb dating indicate that the Snowdon mineralization is genetically and temporally related to Late Ordovician magmatism and caldera formation. It is interpreted to represent volcanogenic pipe-style sulfide mineralization, resulting from focused hydrothermal fluids moving along caldera-related faults and simultaneous dispersal of fluids through the volcaniclastic pile. Sulfur isotope data suggest that, whilst a limited contribution of magmatic S cannot be ruled out, thermochemical reduction of contemporaneous Ordovician seawater sulfate was the dominant mechanism for sulfide production in the Snowdon system, resulting in a mean value of about 12‰ in both the host volcanic strata and the mineralized veins. Despite the tectonic setting being prospective for VMS deposits, strata-bound sulfide accumulations are absent in the caldera. This is attributed to the shallow water depths, which promoted boiling and the formation of sub-seafloor vein-type mineralization. Furthermore, the tectonic instability of the caldera and the high energy, shallow marine environment would have limited preservation of any seafloor deposits. The new U-Pb dates for the base (454.26 ± 0.35 Ma) and top (454.42 ± 0.45 Ma) of the host volcanic rocks, indicate that the Snowdon magmatic activity was short lived, which is likely to have limited the duration and areal extent of the ore-forming system. The absence of massive sulfide mineralization is consistent with the general paucity of economic VMS deposits in the Avalon Zone. Despite the highly prospective geological setting this study further illustrates the importance of volcanic facies mapping and associated paleo-environmental interpretations in VMS exploration.  相似文献   
272.
The Ulleung Basin, East (Japan) Sea, is well-known for the occurrence of submarine slope failures along its entire margins and associated mass-transport deposits (MTDs). Previous studies postulated that gas hydrates which broadly exist in the basin could be related with the failure process. In this study, we identified various features of slope failures on the margins, such as landslide scars, slide/slump bodies, glide planes and MTDs, from a regional multi-channel seismic dataset. Seismic indicators of gas hydrates and associated gas/fluid flow, such as the bottom-simulating reflector (BSR), seismic chimneys, pockmarks, and reflection anomalies, were re-compiled. The gas hydrate occurrence zone (GHOZ) within the slope sediments was defined from the BSR distribution. The BSR is more pronounced along the southwestern slope. Its minimal depth is about 100 m below seafloor (mbsf) at about 300 m below sea-level (mbsl). Gas/fluid flow and seepage structures were present on the seismic data as columnar acoustic-blanking zones varying in width and height from tens to hundreds of meters. They were classified into: (a) buried seismic chimneys (BSC), (b) chimneys with a mound (SCM), and (c) chimneys with a depression/pockmark (SCD) on the seafloor. Reflection anomalies, i.e., enhanced reflections below the BSR and hyperbolic reflections which could indicate the presence of gas, together with pockmarks which are not associated with seismic chimneys, and SCDs are predominant in the western-southwestern margin, while the BSR, BSCs and SCMs are widely distributed in the southern and southwestern margins. Calculation of the present-day gas-hydrate stability zone (GHSZ) shows that the base of the GHSZ (BGHSZ) pinches out at water depths ranging between 180 and 260 mbsl. The occurrence of the uppermost landslide scars which is below about 190 mbsl is close to the range of the GHSZ pinch-out. The depths of the BSR are typically greater than the depths of the BGHSZ on the basin margins which may imply that the GHOZ is not stable. Close correlation between the spatial distribution of landslides, seismic features of free gas, gas/fluid flow and expulsion and the GHSZ may suggest that excess pore-pressure caused by gas hydrate dissociation could have had a role in slope failures.  相似文献   
273.
A brief review of the published evidence of current deposits around Italy is the occasion to test the robustness of matching bottom current velocity models and seafloor morphologies to identify contourite drifts not yet documented. We present the result of the regional hydrodynamic model MARS3D in the Northern Tyrrhenian and Ligurian Sea with horizontal resolution of 1.2 km and 60 levels with focus on bottom current: data are integrated over summer and winter 2013 as representative of low and high intensity current conditions.The Eastern Ligurian margin is impacted by the Levantine Intermediate Water (LIW) with modeled mean velocity of bottom current up to 20 cm s−1 in winter 2013 and calculated bottom shear stress exceeding 0.2 N m−2 in water depth of 400–800 m. By crossing this information with seafloor morphology and geometry of seismic reflections, we identify a sediment drift formerly overlooked at ca 1000 m water depth. The Portofino separated mounded drift has a maximum thickness of at least 150 m and occurs in an area of mean current velocity minimum. Independent evidence to support the interpretation include bottom current modelling, seafloor morphology, seismic reflection geometry and sediment core facies. The adjacent areas impacted by stronger bottom currents present features likely resulted from bottom current erosion such as a marine terrace and elongated pockmarks.Compared to former interpretation of seafloor morphology in the study area, our results have an impact on the assessment of marine geohazards: submarine landslides offshore Portofino are small in size and coexist with sediment erosion and preferential accumulation features (sediment drifts) originated by current-dominated sedimentary processes. Furthermore, our results propel a more general discussion about contourite identification in the Italian seas and possible implications.  相似文献   
274.
In the Levant Basin, submarine channels are abundant around the Nile deep-sea fan (NDSF), an area which is also affected by salt tectonics related to the Messinian salt giant. Here we focus on the relationship between submarine channels and obstacles formed by salt tectonics. Initially, we use methods developed for terrestrial morphological analysis and quantify channel sinuosity, width and slope in search for consistent relationships between morphometric parameters and channel response to obstacles. However, this traditional analysis did not yield robust conclusions. Then, we apply two new morphometric parameters suggested here to express the distortion of channels by obstacles: incident angle (α), defined as the acute angle between the regionally influenced channel direction and the strike of the tectonic obstacle and diversion angle (Ω), defined as the angle between the direction of the regional bathymetric slope and the average direction of the channel. These parameters illustrate the influence of the regional-scale basin geometry and the superimposed tectonic-influenced seabed patterns, on channel development. We found hyperbolic relationships between incident angle (α) and diversion angle (Ω) in which channels flowing approximately parallel (α ≈ 0°) to tectonic folds are (obviously) not diverted; channels nearly orthogonal (α ≈ 90°) to obstacles, crosscut them right through and, again, not diverted much. In contrast, channels with a general direction diagonal to the obstacles (α ≈ 40°), are diverted by ten degrees (Ω ≈ 10°). This diversion accumulates along large distances and significantly influences the regional development of channels around the NDSF. Noteworthy, this phenomenon of channel diversion, indirectly deteriorate normal slope-sinuosity relationships known from terrestrial studies. In light of these findings, we suggest that these new parameters can be applied to other basins, where submarine channels interact with seabed obstacles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号