首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   874篇
  免费   111篇
  国内免费   124篇
测绘学   41篇
大气科学   8篇
地球物理   323篇
地质学   218篇
海洋学   376篇
天文学   23篇
综合类   30篇
自然地理   90篇
  2024年   2篇
  2023年   5篇
  2022年   17篇
  2021年   19篇
  2020年   14篇
  2019年   32篇
  2018年   21篇
  2017年   37篇
  2016年   21篇
  2015年   24篇
  2014年   31篇
  2013年   40篇
  2012年   38篇
  2011年   60篇
  2010年   53篇
  2009年   55篇
  2008年   57篇
  2007年   91篇
  2006年   68篇
  2005年   46篇
  2004年   47篇
  2003年   48篇
  2002年   41篇
  2001年   22篇
  2000年   22篇
  1999年   22篇
  1998年   24篇
  1997年   20篇
  1996年   22篇
  1995年   22篇
  1994年   22篇
  1993年   18篇
  1992年   18篇
  1991年   6篇
  1990年   6篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1983年   2篇
  1979年   1篇
排序方式: 共有1109条查询结果,搜索用时 289 毫秒
171.
为全面剖析淤泥质潮滩变化规律及演变特征,运用修改后的输沙公式建立了淤泥质潮滩演变数值模型。经2000,2007年野外实测数据验证,表明该模型各参数设置准确,较真实地反演了滩涂剖面变化过程,可用于淤泥质潮滩的模拟计算。根据数值模型计算结果得出如下结论:1987-2010年河北省沧州市淤泥质潮滩坡度不断增大,但增长速率变化不大,为0.002×10-3。0 m等深线上部坡度逐渐变缓,年均降低0.021×10-3;下部坡度不断变陡,年均增长0.022×10-3。研究区潮滩未达平衡状态,其坡度将进一步变陡。该输沙模型及研究结论对淤泥质潮滩的保护具有重要的理论指导意义,为其科学开发管理提供实际参考依据。  相似文献   
172.
潮汐地电场特征及机理研究   总被引:28,自引:4,他引:24       下载免费PDF全文
以中国大陆一百个地电场台站的数据为分析基础,将潮汐地电场分类为近正弦形的TGF-A型和近梯形的TGF-B型.TGF-A型地电场与固体潮汐密切关联,基本分布在大面积水域附近,并与附近水域面积和距离、岩性结构、构造活动等因素有关.TGF-B型地电场与气潮作用产生的空间Sq电流关系密切,并与岩石饱和度、渗透率等有关.TGF-A型波形畸变揭示了岩石所受应力可能出现变异,导致岩石裂隙水周期性渗流突变;TGF-B型背景值跃变可能是岩石微破裂加剧导致地下水向破裂区渗流.两类潮汐地电场变异的机理可能是地电场数据应用于强震短临分析的理论基础.  相似文献   
173.
After having estimated the patterns of flow to the ocean and found some seasonal and tidal differences, mainly with regard to the relative importance of dissolved and particulate fractions, mercury partitioning at the interface between a contaminated lagoon and the Atlantic Ocean was investigated during four tidal cycles in contrasting season and tidal regimes. Mercury was found to be located predominantely in the particulate fraction throughout the year, contributing to its retention within the system. Seasonal conditions, variations in marine and fluvial signals and processes affecting bed sediment resuspension influenced the character and concentration of suspended particulate matter in the water column. Variation in the nature, levels and partitioning of organic carbon in the particulate fraction affected levels of particulate mercury as well as mercury partitioning. These results highlight the dominant role of suspended particulate matter in the distribution of anthropogenic mercury and reinforce the importance of competitive behavior related to organic carbon in mercury scavenging.  相似文献   
174.
Dune bedforms and salt‐wedge intrusions are common features in many estuaries with sand beds, and yet little is known about the interactions between the two. Flow visualization with an echosounder and velocity measurements with an acoustic Doppler current profiler over areas of flat‐bed and sand dunes in the highly‐stratified Fraser River estuary, Canada, were used to examine the effect of dunes on interfacial mixing. As the salt‐wedge migrates upstream over the flat‐bed, mixing is restricted to the lower portion of the water column. However, as the salt‐wedge migrates into the dune field from the flat bed, there is a dramatic change in the flow, and large internal in‐phase waves develop over each of the larger dunes, with water from the salt‐wedge reaching the surface of the estuary. The friction Richardson number shows that bed friction is more important in interfacial mixing over the dunes than over the flat‐bed, and a plot of internal Froude Number versus obstacle (dune) height shows that the salt‐wedge flow over the dunes is mainly supercritical. Such bedforms can be expected to cause similar effects in interfacial mixing in other estuaries and sediment‐laden density currents, and may thus be influential in fluid mixing and sediment transport. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
175.
A correct understanding of the hydrodynamics and morphodynamics of tidal basins is of fundamental importance for the fate of the Venice Lagoon, Italy. If on one hand, the development of sophisticated numerical models is called for in order to reproduce the complexity of the mechanisms governing the morphodynamic evolution of many natural environments, including lagoons, on the other hand, a clear knowledge of the reliability and limits of the results provided by these models is crucial in order to establish the condition under which they can be safely applied. To this aim, researchers involved in numerical modeling in the framework of the recent Corila research programmes, agreed to perform an accurate comparison of results provided by three different numerical models, applying them to the test case offered by the experimental investigations performed under controlled conditions by Tambroni et al. (2005a). Here, we consider the following numerical models: (i) a 2D finite element hydrodynamic model coupled with a 2D finite volume morphodynamic model (5 and 3); (ii) a 2D finite element morphodynamic model (Ferrarin et al., 2008); (iii) a 2D depth-averaged model for the inlet region, coupled with a 1D model for the channel (Tambroni et al., 2005b). A first set of simulations concerns the fixed bed case and shows that all the models provide similar results: in particular, they are able to predict the observed free surface oscillations satisfactorily, while comparison with the measured velocity field is less satisfactory. Moreover, as far as the flow field at the inlet is concerned, the models describe accurately the potential flow into the channel during the flood phase, while they are not able to adequately reproduce the occurrence of the fine structure of the shear layers shed by the inlet edges during the ebb phase. This limit is related to the shallow water character of the models. As for the morphodynamics, the long term equilibrium configurations of the bottom of the channel and of the near inlet region show qualitative agreement with the experimental observations, although in this case the differences between the results provided by the distinct numerical approaches are more marked.  相似文献   
176.
A variable mesh finite element model of the Irish and Celtic Sea regions with/without the inclusion of the Mersey estuary is used to examine the influence of grid resolution and the Mersey upon the higher harmonics of the tide in the region. Comparisons are made with observations and published results from finite difference models of the area. Although including a high resolution representation of the Mersey had little effect upon computed tides in the western Irish Sea it had a significant effect upon tidal currents in the eastern Irish Sea. In addition the higher harmonics of the M2 tide in near-shore regions of the eastern Irish Sea particularly the Solway and Mersey estuary together with Morecambe Bay showed significant small scale variability. The Mersey was used to test the sensitivity to including estuaries because high resolution accurate topography was available. The results presented here suggest that comparable detailed topographic data sets are required in all estuaries and near-shore regions. In addition comparisons clearly show the need for an unstructured grid model of the region that can include all the estuaries. Such an unstructured grid solution was developed here within a finite element approach, although other methods in particular the finite volume, or coordinate transformations/curvilinear grids and nesting could be applied.  相似文献   
177.
178.
Flocculation has an important impact on particle trapping in estuarine turbidity maximum (ETM) through associated increases in particle settling velocity. To quantify the importance of the flocculation processes, a size-resolved flocculation model is implemented into an ocean circulation model to simulate fine-grained particle trapping in an ETM. The model resolves the particle size from robust small flocs, about 30 μm, to very large flocs, over 1000 μm. An idealized two-dimensional model study is performed to simulate along-channel variations of suspended sediment concentrations driven by gravitational circulation and tidal currents. The results indicate that the flocculation processes play a key role in generating strong tidal asymmetrical variations in suspended sediment concentration and particle trapping. Comparison with observations suggests that the flocculation model produces realistic characteristics of an ETM.  相似文献   
179.
The stability of cohesive sediments from Venice lagoon has been measured in situ using the benthic flume Sea Carousel. Twenty four stations were occupied during summertime, and a sub-set of 13 stations was re-occupied during the following winter. Erosion thresholds and first-order erosion rates were estimated and showed a distinct difference between inter-tidal and sub-tidal stations. The higher values for inter-tidal stations are the result of exposure that influences consolidation, density, and organic adhesion. The thresholds for each state of sediment motion are well established. However, the rate of erosion once the erosion threshold has been exceeded has been poorly treated. This is because normally a time-series of sediment concentration (C) and bed shear stress (τ0(t)) is used to define threshold stress or cohesion (τcrit,z) and erosion rate (E). Whilst solution of the onset of erosion, τcrit,0, is often reported, the evaluation of the erosion threshold variation through the process of erosion (eroded depth) is usually omitted or not estimated. This usually leads to assumptions on the strength profile of the bed which invariably has no credibility within the topmost mm of the bed where most erosion takes place. It is possible to extract this information from a time-series through the addition of a step in data processing. This paper describes how this is done, and the impact of this on the accuracy of estimates of the excess stress (τ0(t)–τcrit,z) on E.  相似文献   
180.
According to Eurocode 8, the seismic design of flat‐bottom circular silos containing grain‐like material is based on a rough estimate of the inertial force imposed on the structure by the ensiled content during an earthquake: 80% of the mass of the content multiplied by the peak ground acceleration. A recent analytical consideration of the horizontal shear force mobilised within the ensiled material during an earthquake proposed by some of the authors has resulted in a radically reduced estimate of this load suggesting that, in practice, the effective mass of the content is significantly less than that specified. This paper describes a series of laboratory tests that featured shaking table and a silo model, which were conducted in order to obtain some experimental data to verify the proposed theoretical formulations and to compare with the established code provisions. Several tests have been performed with different heights of ensiled material – about 0.5 mm diameter Ballotini glass – and different magnitudes of grain–wall friction. The results indicate that in all cases, the effective mass is indeed lower than the Eurocode specification, suggesting that the specification is overly conservative, and that the wall–grain friction coefficient strongly affects the overturning moment at the silo base. At peak ground accelerations up to around 0.35 g, the proposed analytical formulation provides an improved estimate of the inertial force imposed on such structures by their contents. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号