首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   468篇
  免费   67篇
  国内免费   105篇
测绘学   2篇
大气科学   35篇
地球物理   91篇
地质学   61篇
海洋学   392篇
天文学   9篇
综合类   27篇
自然地理   23篇
  2023年   1篇
  2022年   5篇
  2021年   11篇
  2020年   13篇
  2019年   11篇
  2018年   6篇
  2017年   16篇
  2016年   23篇
  2015年   19篇
  2014年   27篇
  2013年   39篇
  2012年   10篇
  2011年   41篇
  2010年   27篇
  2009年   38篇
  2008年   42篇
  2007年   37篇
  2006年   34篇
  2005年   27篇
  2004年   25篇
  2003年   22篇
  2002年   27篇
  2001年   18篇
  2000年   22篇
  1999年   21篇
  1998年   15篇
  1997年   14篇
  1996年   9篇
  1995年   10篇
  1994年   12篇
  1993年   7篇
  1992年   4篇
  1991年   1篇
  1989年   4篇
  1986年   1篇
  1978年   1篇
排序方式: 共有640条查询结果,搜索用时 46 毫秒
61.
62.
The boundary currents over the Western Australian continental shelf and slope consist of the poleward flowing Leeuwin Current (LC) and the equatorward flowing Leeuwin Undercurrent (LUC). Key properties of the LC are its poleward strengthening, deepening to the south, and shelfbreak intensification. The alongshore flow reverses direction below about 300 m, forming the LUC at greater depths. To investigate the processes that cause these features, we obtain solutions to an idealized, regional ocean model of the South Indian Ocean. Solutions are forced by relaxing surface density to a prescribed, meridionally varying density profile ρ*(y) with a timescale of δt. In addition, vertical diffusion is intensified near the ocean surface. This diffusion establishes the minimum thickness over which density is well-mixed. We define this thickness as the “upper layer”. Solutions are obtained with and without a continental shelf and slope off Western Australia and for a range of values of δt and mixing parameters. Within this upper layer, there is a meridional density gradient that balances a near-surface, eastward geostrophic flow. The eastward current downwells near the eastern boundary, leading to westward flow at depth. The upper layer's meridional structure and zonal currents crucially depend on coastal processes, including the presence of topography near the eastern boundary. Kelvin waves inhibit the upper layer from deepening at the coast. Rossby waves propagate the coastal density structure offshore, hence modifying the interior currents. A comparison of the solutions with or without a continental shelf and slope demonstrate that topographic trapping of Rossby waves is a necessary process for maintaining realistic eastern boundary current speeds. Significant poleward speeds occur only onshore of where the upper layer intersects the slope, that is, at a grounding line. Its poleward transport increases when surface-enhanced vertical mixing is applied over a greater depth. When the timescale δt is sufficiently short, the poleward current is nearly barotropic. The current's spatial structure over the shelf is controlled by horizontal mixing, having the structure of a Munk layer. Increasing vertical diffusion deepens the upper layer thickness and strengthens the alongshore current speed. Bottom drag leads to an offshore flow along the bottom, reducing the net onshore transport and weakening the current's poleward acceleration. When δt is long, poleward advection of buoyancy forms a density front near the shelf break, intensifying poleward speeds near the surface. With bottom drag, a bottom Ekman flow advects density offshore, shifting the jet core offshore of the shelf break. The resulting cross-shelf density gradient reverses the meridional current's direction at depth, leading to an equatorward undercurrent.  相似文献   
63.
全球过去千年典型暖期温度空间格局重建   总被引:1,自引:0,他引:1  
利用过去两千年全球变化研究网络(PAGES 2k network)最新公布的501条代用记录,重建了全球过去千年全年平均温度空间格局的演化特征,对比分析了中世纪暖期及其最暖100年与20世纪现代暖期、中世纪暖期和小冰期最暖30年与20世纪最近30年的年平均温度空间模态异同.结果显示,在世纪尺度上,现代暖期与历史上中世纪暖期的温度异常空间格局大致相同,变化幅度也在大部分区域相当,但从年代际尺度上,最近30年的升温比过去千年中世纪暖期和小冰期两个典型时期都明显.值得一提的是北大西洋中高纬度海温变化与上述特征并不相同,在年代际和世纪尺度上小冰期和中世纪暖期海温均高于20世纪.可能原因是大西洋经圈翻转环流在中世纪暖期、小冰期和20世纪现代暖期等3个特征时段对太阳辐射、火山活动和温室气体等外强迫的响应不同.  相似文献   
64.
冬季黄海暖流西偏机理数值探讨   总被引:1,自引:0,他引:1  
利用海洋数值模式(MITgcm)模拟了冬季黄海流场并对冬季黄海暖流西偏的机理进行了探讨。冬季黄海流场模拟试验表明,黄海暖流由济州岛以西约32.5°N,125°E附近进入黄海,然后沿着黄海深槽西侧70 m等深线附近向北偏西运动;海面高度调整对黄海暖流路径具有重要影响,沿着黄海暖流路径的海面高度梯度比周围海区大,由海面高度梯度产生的地转流引起的北向体积输运占总的北向体积输运的78%。狭长海湾地形控制试验表明,单纯的黄海地形分布不足以引起黄海暖流西偏。黄海典型断面试验与渤海、黄海、东海地形控制试验说明,黄海暖流进入黄海的地理位置对流场分布有重要影响,黄海暖流进入黄海的位置恰好位于深槽西侧地形坡度较大区域,在位涡守恒的约束下黄海暖流受地形捕获沿70 m等深线附近向北偏西运动;试验还表明,黄海暖流进入黄海的位置与东海北部环流和地形分布有关,在冬季风的作用下东海北部环流的一部分沿着地形陡坡进入黄海形成黄海暖流。由此认为,黄海、东海环流在其特殊地形的约束下对冬季风的响应和调整,是引起黄海暖流西偏的主要原因。  相似文献   
65.
Local scour around a submerged vertical circular cylinder in steady currents was studied both experimentally and numerically. The physical experiments were conducted for two different cylinder diameters with a range of cylinder height-to-diameter ratios. Transient scour depth at the stagnation point (upstream edge) of the cylinder was measured using the so-called conductivity scour probes. Three-dimensional (3D) seabed topography around each model cylinder was measured using a laser profiler. The effect of the height-to-diameter ratio on the scour depth was investigated. The experimental results show that the scour depth at the stagnation point is independent on cylinder height-to-diameter ratio when the later is smaller than 2. The increase rate of equilibrium scour depth with cylinder height increases with an increase in Shields parameter.  相似文献   
66.
Zooplankton research off Peru: A review   总被引:2,自引:1,他引:1  
A review of zooplankton studies conducted in Peruvian marine waters is given. After a short history of the development of zooplankton research off Peru, we review zooplankton methodology, taxonomy, biodiversity, spatial distribution, seasonal and interannual variability, trophodynamics, secondary production, and modelling. We review studies on several micro-, meso-, macro-, and meroplankton groups, and give a species list from both published and unpublished reports. Three regional zooplankton groups have been identified: (1) a continental shelf group dominated by Acartia tonsa and Centropages brachiatus; (2) a continental slope group characterized by siphonophores, bivalves, foraminifera and radiolaria; (3) and a species-rich oceanic group. The highest zooplankton abundances and biomasses were often found between 4–6°S and 14–16°S, where continental shelves are narrow. Species composition changes with distance from the shore. Species composition and biomass also vary strongly on short time scales due to advection, peaks of larval production, trophic interactions, and community succession. The relation of zooplankton to climatic variability (ENSO and multi-decadal) and fish stocks is discussed in the context of ecological regime shifts. An intermediate upwelling hypothesis is proposed, based on the negative effects of low upwelling intensity in summer or extremely strong and enduring winter upwelling on zooplankton abundance off Peru. According to this hypothesis, intermediate upwelling creates an optimal environmental window for zooplankton communities. Finally, we highlight important knowledge gaps that warrant attention in future.  相似文献   
67.
In this study we used two stable isotopes, δ13C and δ18O, for water mass classification in the coastal region off eastern Hokkaido. δ13C* values, which were corrected for the biological effect, and δ 18O values up to 300 m depth suggested that the isotopic character of the onshore and offshore water in the southern Okhotsk Sea, the Nemuro Strait and the western North Pacific could be explained by the mixing of three source waters: the Oyashio water (OYW), Soya Warm Current water (SWCW) and East Sakhalin Current water (ESCW). In summer, δ 13C*-δ 18O plots indicated mixing between SWCW from the southern Okhotsk Sea and OYW in the Pacific coast of southeastern Hokkaido, while temperature-salinity plots of the onshore water showed minimal difference from the offshore OYW. In winter, on the other hand, the mixed water of ESCW and OYW (or SWCW) appeared in the Pacific coastal region, distributed as cold, low salinity onshore water. Finally, we estimated mixing ratios of OYW, SWCW and ESCW in the coastal region of western North Pacific using their mean values of δ 13C* and δ 18O as endmembers. These results suggest seasonal and yearly changes of water mass combination en route from the southern Okhotsk Sea to the western North Pacific.  相似文献   
68.
We used the tropical oceanic planktonic diatom species Nitzschia marina, Rhizosolenia bergonii and Azpeitia africana/Azpeitia neocrenulata, most commonly found in the surface sediments of the northeasternmost South China Sea (SCS) where the Kuroshio Current enters the SCS through the Bashi Strait north of Luzon, to analyse the influence of the the Kuroshio Current on the SCS. The impact of the Kuroshio Current seems to be relatively strong during major warm periods and, to a lesser degree, in minor warm periods during the last 115 000 years. The strongest influence took place during the main part of the Holocene and during the very late phase of Marine Isotope Stage (MIS) 5e. It is possible to distinguish two magnitudes of change in the impact of the Kuroshio Current on the SCS: large changes occurred at shifts between glacial and interglacial conditions, while smaller changes seem to have recurred in both glacial and interglacial episodes as well as during the Holocene. Climatic/oceanographic changes and sea‐level variations were possibly the two most important mechanisms for the varying influences of the Kuroshio Current on the SCS. The interaction between the Kuroshio Current and monsoon‐related processes may also have played a role. However, because of restricted knowledge of the present‐day Kuroshio Current and the absence of a modern analogue to the ancient SCS due to the marked changes in palaeogeography, this relationship is difficult to establish. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
69.
A multivariable approach utilising bulk sediment, planktonic Foraminifera and siliceous phytoplankton has been used to reconstruct rapid variations in palaeoproductivity in the Peru–Chile Current System off northern Chile for the past 19 000 cal. yr. During the early deglaciation (19 000–16 000 cal. yr BP), our data point to strongest upwelling intensity and highest productivity of the past 19 000 cal. yr. The late deglaciation (16 000–13 000 cal. yr BP) is characterised by a major change in the oceanographic setting, warmer water masses and weaker upwelling at the study site. Lowest productivity and weakest upwelling intensity are observed from the early to the middle Holocene (13 000–4000 cal. yr BP), and the beginning of the late Holocene (<4000 cal. yr BP) is marked by increasing productivity, mainly driven by silicate‐producing organisms. Changes in the productivity and upwelling intensity in our record may have resulted from a large‐scale compression and/or displacement of the South Pacific subtropical gyre during more productive periods, in line with a northward extension of the Antarctic Circumpolar Current and increased advection of Antarctic water masses with the Peru–Chile Current. The corresponding increase in hemispheric thermal gradient and wind stress induced stronger upwelling. During the periods of lower productivity, this scenario probably reversed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
70.
Transfort of oxygen,nutrients and carbonates by the Kuroshio Current   总被引:1,自引:0,他引:1  
Measured concentrations of dissolved oxygen, phosphate, silicate, total alkalinity and calculated total CO2 in a section between 121° E and 125° E across the Kuroshio near 22° N off Taiwan and the geostrophic velocity were used to estimate the gross transport of oxygen, nutrients and carbonates. The flux of dissolved oxygen is 6.7×106 mol/s northward and 0.9×106 mol/s southward. The net flux equals 5.8×106 mol/s down-stream. The northward flux of phosphate is 22.6×103 mol/s; the southward flux is 1.4×103 mol/s. The net phosphate flux is 21.2×103 mol/s northward. The flux of silicate is 967×103 northward and 59×103 mol/s southward; the net transport is 908×103 mol/s down-stream. The flux of alkalinity is 75.5×106 mol/s northward, and 10.8×106 mol/s southward, the net flux is 64.7×106 mol/s northward. For total CO2 the transport is 73.4×106 mol/s northward and 10.8×106 mol/s southward, or a net transport of 62.6×106 mol/s horthward.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号