首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   19篇
  国内免费   18篇
地球物理   53篇
地质学   41篇
海洋学   47篇
自然地理   7篇
  2023年   2篇
  2022年   4篇
  2021年   7篇
  2020年   7篇
  2019年   11篇
  2018年   12篇
  2017年   6篇
  2016年   1篇
  2015年   6篇
  2014年   8篇
  2013年   6篇
  2012年   6篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   6篇
  2007年   4篇
  2006年   4篇
  2005年   4篇
  2004年   9篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   4篇
  1994年   5篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有148条查询结果,搜索用时 234 毫秒
31.
Deep CTD Casts in the Challenger Deep,Mariana Trench   总被引:1,自引:0,他引:1  
On 1 December 1992, CTD (conductivity-temperature-depth profiler) casts were made at three stations in a north-south section of the Challenger Deep to examine temperature and salinity profiles. The station in the Challenger Deep was located at 11°22.78′ N and 142°34.95′ E, and the CTD cast was made down to 11197 db or 10877 m, 7 m above the bottom by reeling out titanium cable of 10980 m length. The southern station was located at 11° 14.19′ N and 142°34.79′ E, 16.1 km from the central station, where water depth is 9012 m. CTD was lowered to 7014 db or 6872 m. The northern station was located at 11°31.47′ N and 142° 35.30′ E, 15.9 km from the central station, and CTD was lowered to 8536 db or 8336 m, 10 m above the bottom. Below the thermocline, potential temperature decreased monotonously down to 7300–7500 db beyond a sill depth between 5500 m and 6000 m, or between 5597 db and 6112 db, of the trench. Potential temperature increased from 7500 db to the bottom at a constant rate of 0.9 m°C/1000 db. Salinity increased down to 6020–6320 db, and then stayed almost constant down to around 9000 db. From 9500 db to the bottom, salinity increased up to 34.703 psu at 11197 db. Potential density referred to 8000 db increased monotonously down to about 6200 db, and it was almost constant from 6500 db to 9500 db. Potential density increased from 9500 db in accordance with the salinity increase. Geostrophic flows were calculated from the CTD data at three stations. Below an adopted reference level of 3000 db, the flow was westward in the north of Challenger Deep and eastward in the south, which suggests a cyclonic circulation over the Challenger Deep. Sound speed in Challenger Deep was estimated from the CTD data, and a relation among readout depth of the sonic depth recorder, true depth, and pressure was examined.  相似文献   
32.
Hydrographic surveys and satellite imaging reveal that mesoscale anticyclonic (AC) eddies are common features of the area south of Bussol' Strait, the deepest of the Kuril straits connecting the western North Pacific and Sea of Okhotsk. To examine the velocity structure of these eddies, we deployed groups of 15-m drogued satellite-tracked surface drifters over the Kuril-Kamchatka Trench in the fall of 1990 and late summer of 1993. Drifters in both groups entered large AC eddies centered over the axis of the trench seaward of Bussol' Strait and subsequently underwent a slow northeastward translation. One drifter (Drifter 1315) deployed near the center of the “Bussol' eddy” in 1990, remained in the eddy for roughly 45 days and made five loops at successively greater distances from the eddy center. Large-amplitude (80–100 cm/s) storm-generated inertial oscillations were observed during the first two loops. The vorticity field associated with the eddy resulted in a Doppler “red-shift” of inertial frequency motions such that the “effective” inertial period of 21 hours was roughly 4 hours greater than the nominal inertial period for the drifter latitude (45°N). In 1993, a second drifter (Drifter 15371) was retained in the Bussol' eddy for about 40 days. This eddy had characteristics similar to those of the 1990 eddy but was devoid of significant high-frequency motions until the drifter's final half loop. The observed spatial scales, persistence, and slow poleward translation of the eddies suggests that they play an important role in the dynamics of the East Kamchatka and Oyashio current systems. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
33.
A 1987 survey of the offshore Peru forearc using the SeaMARC II seafloor mapping system reveals that subduction of the Nazca Ridge has resulted in uplift of the lowermost forearc by as much as 1500 m. This uplift is seen in the varied depths of two forearc terraces opposite the subducting ridge. Uplift of the forearc has caused fracturing, minor surficial slumping, and increased erosion through small canyons and gullies. Oblique trending linear features on the forearc may be faults with a strike-slip component of motion caused by the oblique subduction of the Nazca Ridge. The trench in the zone of ridge subduction is nearly linear, with no re-entrant in the forearc due to subduction of the Nazca Ridge. Compressional deformation of the forearc due to subduction of the ridge is relatively minor, suggesting that the gently sloping Nazca Ridge is able to slide beneath the forearc without significantly deforming it. The structure of the forearc is similar to that revealed by other SeaMARC II surveys to the north, consisting of: 1) a narrow zone (10 to 15 km across) of accreted material making up the lower forearc; 2) a chaotic middle forearc; 3) outcropping consolidated material and draping sediment on the upper forearc; and 4) the smooth, sedimented forearc shelf.The subducting Nazca plate and the Nazca Ridge are fractured by subduction-induced faults with offsets of up to 500 m. Normal faulting is dominant and begins about 50 km from the trench axis, increasing in frequency and offset toward the trench. These faults are predominantly trench-parallel. Reverse faults become more common in the deepest portion of the trench and often form at slight angles to the trench axis.Intrusive and extrusive volcanic areas on the Nazca plate appear to have formed well after the seafloor was created at the ridge crest. Many of the areas show evidence of current scour and are cut by faulting, however, indicating that they formed before the seafloor entered the zone of subduction-induced faulting.  相似文献   
34.
浙江沿海潜在区域地震海啸风险分析   总被引:3,自引:2,他引:1  
采用COMCOT海啸模型建立三重网格模型模拟了2011年3月11日日本东北部9.0级地震引发的海啸发生、发展以及在我国东南沿海传播过程。震源附近浮标站以及浙江沿海的潮位站实测资料验证结果显示,大部分监测站首波到达时间和海啸波的计算值相差在15%以内,表明模型可较好的模拟海啸在计算域内的传播过程。研究表明日本南海海槽、冲绳海槽以及琉球海沟南部是影响浙江沿海主要的区域潜在震源,通过情景计算分别模拟3个潜在震源9.1级、8.0级和8.7级地震引发的海啸对浙江沿海的海啸风险,计算结果表明,海啸波产生后可在3~8h内传至浙江省沿岸,海啸波达1~3m,最大可达4m,此时浙江沿岸面临Ⅲ~Ⅳ级海啸风险,达到淹没至严重淹没等级。  相似文献   
35.
An air‐gun survey, conducted over a total distance of 4356 km in the western end of the Kurile Arc offshore, has revealed the architecture and evolution of the Kushiro submarine canyon and Tokachi submarine channels of the Tokachi‐oki forearc basin. The Kushiro submarine canyon, which runs along the eastern margin of the forearc basin, is characterized by an entrenchment of up to several hundred metres in depth. The Tokachi submarine channels, by contrast, occupy the centre of the basin and consist of small, branching and levéed channels. The Kushiro submarine canyon is not connected to the Tokachi River, which has the largest drainage area in eastern Hokkaido, with a catchment area of approximately 9010 km2 that includes high mountains and a volcanic region. Instead, the Kushiro submarine canyon exhibits an offset connection/quasi‐connection (probably having been connected during a prior sea‐level lowstand) with the Kushiro River (drainage area of 2500 km2) which contains the Kushiro Swamp at its mouth. To understand this unusual arrangement of rivers and submarine channels, acoustic facies analysis was undertaken to establish the seismic stratigraphy of the area. Subsurface strata can be divided into six seismic units of Miocene to Recent age. Analyses of seismic facies and isopach maps indicate that: (i) the palaeo‐Kushiro submarine canyon, which was ancestral to the Kushiro submarine canyon, was an aggradational levéed channel; and (ii) the palaeo‐Tokachi submarine channel was much larger than the present‐day channel and changed its course several times. Both the palaeo‐Kushiro submarine canyon and palaeo‐Tokachi submarine channel were fed predominantly by the ancestral Tokachi River, whereas the present‐day channels are no longer connected or quasi‐connected to the Tokachi River. Entrenchment of the Kushiro submarine canyon began in its distal reaches during the Early Pleistocene and propagated landward over time, which was possibly caused by base‐level fall (i.e. subsidence of the trench floor) or uplift of the forearc basin. Entrenchment of the upper part of the Kushiro submarine canyon began during the Middle Pleistocene, which may have been related to: (i) depositional progradation; (ii) uplift of the coastal area; or (iii) a change in source area from the ancestral Tokachi River to the Kushiro River.  相似文献   
36.
地质雷达是利用电磁波对地下不同电性介质进行探测的地球物理仪器,其探测速率快、分辨率高,可弥补探槽和其他地球物理方法存在探测盲区的缺陷,正在越来越多地应用于活动断层探测领域。本文以乌拉山山前断裂为例开展地质雷达探测工作,使用无人机正射影像技术对测线进行地形校正,获得断层浅部地质雷达图像。研究结果表明,本文研究方法能有效反映探槽揭露的地层单元和断层分布。本次探测中,雷达波形图像特征为:浅地表的土壤层反射波总体较弱;粗粒沉积为主的砾石层反射波总体较强,同相轴连续性好;细粒沉积为主的砂层反射波弱于砾石层,波形以中、高频为主,同相轴具有弱连续性;对于洪冲积地区,地质雷达能分辨具有一定特征的地层单元,这为剖面图像的断层识别提供了标志;通过无人机正射影像技术对地质雷达测线进行地形校正,有利于获得更为准确的探测结果。  相似文献   
37.
(黄培华)(苏维加)(陈金波)SeismicityandstressfieldinOkinawaTroughandRyukyuregions¥Pei-HuaHUANG;Wei-jiaSUandJin-BoCHEN(DepartmentofEartha...  相似文献   
38.
1INTRODUCTION TheTianqiaogou Huangyangchuanfault(alsocalledGulangfault)isanimportantpartofanactivefaultzoneontheeasternsectionofthenorthernQilianMountains.Therecentactivityofthefaulthasbeenstudiedtodifferentdegrees(WanFuling,1987;InstituteofGeology,StateS…  相似文献   
39.
The northern part of the Dead Sea Fault Zone is one of the major active neotectonic structures of Turkey. The main trace of the fault zone (called Hacıpaşa fault) is mapped in detail in Turkey on the basis of morphological and geological evidence such as offset creeks, fault surfaces, shutter ridges and linear escarpments. Three trenches were opened on the investigated part of the fault zone. Trench studies provided evidence for 3 historical earthquakes and comparing trench data with historical earthquake records showed that these earthquakes occurred in 859 AD, 1408 and 1872. Field evidence, palaeoseismological studies and historical earthquake records indicate that the Hacıpaşa fault takes the significant amount of slip in the northern part of the Dead Sea Fault Zone in Turkey. On the basis of palaeoseismological evidence, it is suggested that the recurrence interval for surface faulting event is 506 ± 42 years on the Hacıpaşa fault.  相似文献   
40.
Volcanic rocks of the Kyushu–Palau Ridge (KPR) from Deep Sea Drilling Project (DSDP) site 448 and from Belau comprise a low-to-medium-K arc tholeiitic series. Belau rocks include (probable) Mid-Eocene low-Ca type-3 boninite and pre-Early Oligocene–Early Miocene low-K arc tholeiitic basalt, basaltic andesite, andesite and dacite. Palau Trench samples include sparsely phyric high-Mg, -Cr and -Ni rocks which resemble the Belau boninite and Izu–Bonin – Mariana (IBM) system boninites. The high-Mg Palau Trench samples also resemble other primitive arc lavas (e.g. arc picrites). Their chemistry suggests an origin involving steep thermal gradients in multiply depleted mantle. Subduction of hot, young lithosphere under a young hot upper plate is postulated to explain this occurrence. The KPR is inferred to be the source of Eocene boninite and arc tholeiitic terranes presently in forearc regions of the IBM system. A model is presented here showing how many IBM boninites may have originated in a small area near Belau. These have migrated eastward by episodic back-arc opening accompanying eastward migration of arcs and trenches. Oldest known KPR rocks ( ca 47.5 Ma at DSDP site 296), and presumed KPR-derived exotic terranes of Guam ( ca 43.8 Ma), presage the postulated Eocene ( ca 42–43 Ma) change in Pacific plate motion invoked as the cause of subduction initiation at the KPR. The KPR has been rotated more than 40° clockwise since the Eocene, thus the age mismatch may indicate a different tectonic style, for example transtension or transpression, in earliest KPR history.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号