首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   3篇
  国内免费   17篇
测绘学   2篇
地球物理   10篇
地质学   58篇
海洋学   9篇
综合类   2篇
自然地理   20篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   5篇
  2019年   5篇
  2018年   1篇
  2017年   7篇
  2016年   9篇
  2015年   5篇
  2014年   7篇
  2013年   6篇
  2012年   6篇
  2011年   1篇
  2010年   3篇
  2009年   6篇
  2008年   6篇
  2007年   8篇
  2006年   8篇
  2005年   6篇
  2004年   4篇
  2003年   1篇
  2001年   1篇
  1993年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
41.
The northern Noorabad area in western Iran contains several gabbro and basalt bodies which were emplaced along the Zagros suture zone. The basalts show pillow and flow structures with amygdaloidal textures, and the gabbroic rocks show massive and foliated structures with coarse to fine-grained textures. The SiO2 contents of the gabbros and basalts are similar and range from 46.1–51.0 wt.%, and the Al2O3 contents vary from 12.3–18.8 wt.%, with TiO2 contents of 0.4–3.0 wt.%. The Nb concentrations of some gabbros and basalts are high and can be classified as Nb-enriched arc basalts. The positive εNd(t) values (+3.7 to +9.8) and low 87Sr/86Sr(initial) ratios (0.7031–0.7071) of both bodies strongly indicate a depleted mantle source and indicate that the rocks were formed by partial melting of a depleted lithospheric mantle and interaction with slab fluids/melts. The chemical composition of trace elements, REE pattern and initial 87Sr/86Sr-143Nd/144Nd ratios show that the rocks have affinities to tholeiitic magmatic series and suggest an extensional tectonic regime over the subduction zone for the evolution of these rocks. We propose an extensional tectonic regime due to the upwelling of metasomatized mantle after the late Cretaceous collision in the Harsin-Noorabad area. These rocks can be also considered as Eocene back arc magmatic activity along the Zagros suture zone in this area.  相似文献   
42.
Ancient subduction zones are characterized by metamorphic and orogenic belts. The Zagros Orogenic Belt comprises almost all sections of an ancient subduction zone along which Neo-Tethyan oceanic crust was subducted beneath central Iran. The Eslami Peninsula, as a part of the Zagros Orogenic Belt in Azerbaijan province, northwestern Iran, is situated between the Lake Urmia fore-arc basin and the Sahand Magmatic Arc. This region contains Eocene leucite dikes, trachyte, tephrite, phenolite, basanite and syenite. Volcanic features related to the Sahand are located in the eastern part of the Eslami Peninsula. In view of its relative age and composition, the Eslami Peninsula proposed as an outer arc of the Sahand Magmatic Arc that formed within the post-collisional setting of the central Iranian and Arabian plates. After subduction and contact of the two plates, a symmetric pop-up structure has been created by thrusting in the Zagros belt as a result of the collision processes. The injesction of dikes in the Eslami Peninsula is also a result of the continent_continent collision.  相似文献   
43.
针对中东地区油藏普遍存在油水界面倾斜的特征,以伊朗雅达(Yada)油田为例对其成因进行探讨。通过对层序界面三维地震资料精细解释,以及系统的构造演化分析,认为研究区油气成藏关键期集中于新生代扎格罗斯前陆盆地演化阶段,而该阶段经历了多期较强烈的南北向差异性构造活动,在扎格罗斯东西向持续挤压背景下,后期南北向构造反转形成的长轴背斜圈闭对早期古油藏短轴背斜圈闭进行改造,从而形成了油水界面倾斜、继承性构造高点含油幅度最大、构造反转越强油水过渡带跨度越大等特征的非稳态油气藏。结果表明,研究区南北向差异性构造演化控制了油气成藏模式和油藏形态。  相似文献   
44.
The Baneh plutonic complex is situated in the Zagros suture zone of northwest Iran between the Arabian and Eurasian plates. This complex is divided into granite and appinite groups. Zircon U–Pb dating shows that granites crystallized 41–38 million years ago but appinites experience more protracted magmatic evolution, from at 52 to 38 Ma. Whole-rock chemical compositions show significant major and trace element variations between the two lithologies. Granitic rocks are more evolved, with high contents of SiO2 (62.4–77.0 wt%), low contents of TiO2 (0.25 wt%), MgO (0.05–1.57 wt%), and Fe2O3 (0.40–4.06 wt%) and high contents of Na2O + K2O (≈10 wt%). In contrast, appinites have low contents of SiO2 (51.0–57.0 wt%) and K2O (<2.1 wt%) and high Fe2O3 (6.4–9.35 wt%), MgO (2.0–9.9 wt%), and Mg number (Mg# = 35–76). The concentration of rare earth elements in the appinites is higher than in granitic rocks, making it difficult to form granites solely by fractionation of appinite magma. (87Sr/86Sr)i and εNd(40 Ma) in both groups are similar, from 0.7045 to 0.7061 and ?1.2 to +2.6, except for a primitive gabbroic dike with εNd(40 Ma) = +9.9. Appinites show mainly typical I-type characteristics, but granites have some S-type characteristics. The sigmoidal shape of the Baneh pluton and its emplacement into deformed Cretaceous shales and limestone showing kink bands, asymmetric and recumbent folds in a broad contact zone, with pervasive ductile to brittle structures in both host rocks and intrusion, indicate that magma emplacement was controlled by a transpressional tectonic regime, perhaps developed during early stages in the collision of Arabia and Eurasian plates.  相似文献   
45.
仲米虹 《地质与勘探》2019,55(6):1528-1539
扎格罗斯盆地是我国油气公司海外勘探的重要区域。基于最新油气田资料,系统分析了盆地的油气地质特征,总结了油气分布规律,并探讨了其主控因素。结果表明扎格罗斯盆地主要发育志留系、三叠系、侏罗系和白垩系四套主力烃源岩及古近系次要烃源岩,其中白垩系烃源岩贡献最大。碳酸盐岩是盆地的主要储层类型,从二叠系至中新统均有分布,其中上白垩统班吉斯坦(Bangestan)群和渐新统-下中新统阿斯马里组(Asmari)是主力产层;碎屑岩为次要储层,大部分位于土耳其境内的托罗斯褶皱带内。受造山运动挤压褶皱作用控制,盆地主要发育背斜构造圈闭,且油气总体上表现出垂向运移的特征。分析认为迪兹富勒坳陷、基尔库克坳陷和帕卜德赫坳陷蕴含了盆地绝大多数的油气资源,且新生界和白垩系的油气最为富集,其分布规律主要受控于烃源岩展布、圈闭分布、断层和裂缝发育程度及区域盖层的共同作用。  相似文献   
46.
Crude oil and source rock samples from one of the main oilfields of the Abadan Plain, Zagros, Iran were analyzed geochemically. Rock-Eval pyrolysis was conducted on Kazhdumi (Upper Cretaceous) and Gadvan (Lower Cretaceous) formations, which are the probable source rocks for the oil in the region. The results indicated that the Kazhdumi Formation can be classified as a fair-to-excellent source rock, while the Gadvan Formation can be identified as having poor-to-good source rock in the basin. Based on the cross-plots of HI versus OI and S2 versus TOC, types II and III kerogen were identified from studied source samples in the area. Determination of the main fraction percentages of the Sarvak and Fahliyan crude oils represented that the oils from the Sarvak reservoir are paraffinic-naphthenic and aromatic-intermediate, whilst that from the Fahliyan reservoir is paraffinic and paraffinic-naphthenic. Biomarker ratios of the saturated fractions of oil from both reservoirs indicate that the source rocks formed in reducing marine environments with carbonate-shale lithology. Furthermore, biomarker data helped to distinguish the degree of biodegradation in the studied oils. According to geochemical analysis, oil samples from the Fahliyan reservoir were generated at a higher thermal maturity than the Sarvak reservoir samples.  相似文献   
47.
ABSTRACT

Soheyle-Pakuh granitoid rocks, with a variety of quartz diorite, quartz monzodiorite, granodiorite, tonalite, and granite, have been emplaced into the Tertiary volcanic rocks in the Urumieh-Dokhtar magmatic arc in central Iran. Zircon U–Pb dating yields an age of 39.63 ± 0.93 Ma for the crystallization of this body. Whole-rock compositions show that SiO2 changes from 52.31 to 65.78 wt.% and Al2O3 varies from 15.54 to 18.24 wt.%, as well as high concentrations of large-ion lithophile elements (LILE, e.g. Cs, Rb, Ba, and K) and quite low contents of high field strength elements (HFSE, e.g. Nb, Ti, P), as expected in I-type arc granitoids formed in an active continental margin setting. Initial ratios of 87Sr/86Sr and 143Nd/144Nd exhibit ranges 0.7043–0.7047 and 0.51284 to 0.51287, respectively, with positive εNd(t) from +4.9 to +5.5 with a young TDM1 age (483–674 Ma); this tracer isotopic data suggesting that the SPG originated from juvenile basaltic crust derived from depleted mantle (~90%) with variable contributions from undepleted mantle and approximately 10% old lower crust, despite diverse processes (e.g. magma mixing and fractional crystallization) during their evolution and emplacement into a local extensional setting within the continental margin arc. The isotopic data are similar to those of other Phanerozoic granitoids of the Central Asian Orogenic Belt and corroborate melting of predominantly mantle-derived juvenile crustal protoliths and indicating extensive addition of new continental crust, during Cambrian-Neoproterozoic time, in the suprasubduction zone beneath the central Urumieh-Dokhtar magmatic arc. Generation of these types of granitoids favours a model whereby rollback and (or) break-off of a subducted slab with subsequent lithospheric extension triggered by mantle upwelling, heat advection, and underplating resulting in melting of the central UDMA mantle-derived juvenile lower continental crust in the Late Eocene.  相似文献   
48.
49.
Khalil Sarkarinejad   《Tectonophysics》2007,442(1-4):49-65
The Ghouri area in southwest Iran exposes a cross section through the Zagros orogenic belt. The area provides an opportunity to investigate quantitative finite strain (Rs), kinematic vorticity number (Wk), proportions of pure shear and simple shear components, sense of shear indicators, steeply plunging lineations, and other moderate to steeply plunging stretching lineations in a transpressional zone. Based on a classical strain analysis of deformed microfossils with oblate strain ellipsoid shape, the Zagros orogenic belt is classified as a pure-shear dominated zone of transpression, but asymmetry of shear-sense indicators suggests that a significant component of simple shear was involved along the deformation zone boundaries. The long axes of the microfossils and stretched pebbles of a deformed conglomerate were used to indicate the stretching direction in this zone. The stretching lineations have a steep to moderate plunge but a constant strain magnitude. Characteristics of dextral inclined transpressional kinematics in the Zagros continental collision zone were quantified and indicate an estimated k-value < 1, an angle between the maximum horizontal axis of the instantaneous strain ellipsoid and the zone boundary (θ = 32°), asymmetrical dextral shear-sense indicators, and an angle of relative plate motion (α = 25°).  相似文献   
50.
The nature of the transition between the Zagros intra-continental collision and the Makran oceanic subduction is a matter of debate: either a major fault cutting the whole lithosphere or a more progressive transition associated with a shallow gently dipping fault restricted to the crust. Microearthquake seismicity located around the transition between the transition zone is restricted to the west of the Jaz-Murian depression and the Jiroft fault. No shallow micro-earthquakes seem to be related to the NNW–SSE trending Zendan–Minab–Palami active fault system. Most of the shallow seismicity is related either to the Zagros mountain belt, located in the west, or to the NS trending Sabzevaran–Jiroft fault system, located in the north. The depth of microearthquakes increases northeastwards to an unusually deep value (for the Zagros) of 40 km. Two dominant types of focal mechanisms are observed in this region: low-angle thrust faulting, mostly restricted to the lower crust, and strike-slip at shallow depths, both consistent with NS shortening. The 3-D inversion of P traveltimes suggests a high-velocity body dipping northeastwards to a depth of 25 km. This high-velocity body, probably related to the lower crust, is associated with the deepest earthquakes showing reverse faulting. We propose that the transition between the Zagros collision and the Makran subduction is not a sharp lithospheric-scale transform fault associated with the Zendan–Minab–Palami fault system. Instead it is a progressive transition located in the lower crust. The oblique collision results in partial partitioning between strike-slip and shortening components within the shallow brittle crust because of the weakness of the pre-existing Zendan–Minab–Palami faults.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号