首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2144篇
  免费   480篇
  国内免费   426篇
测绘学   176篇
大气科学   287篇
地球物理   776篇
地质学   1011篇
海洋学   476篇
天文学   13篇
综合类   110篇
自然地理   201篇
  2024年   9篇
  2023年   29篇
  2022年   72篇
  2021年   86篇
  2020年   114篇
  2019年   133篇
  2018年   112篇
  2017年   100篇
  2016年   106篇
  2015年   130篇
  2014年   164篇
  2013年   170篇
  2012年   143篇
  2011年   149篇
  2010年   130篇
  2009年   138篇
  2008年   127篇
  2007年   133篇
  2006年   135篇
  2005年   108篇
  2004年   93篇
  2003年   93篇
  2002年   71篇
  2001年   63篇
  2000年   61篇
  1999年   41篇
  1998年   44篇
  1997年   50篇
  1996年   52篇
  1995年   34篇
  1994年   35篇
  1993年   26篇
  1992年   20篇
  1991年   16篇
  1990年   12篇
  1989年   14篇
  1988年   13篇
  1987年   7篇
  1986年   3篇
  1985年   4篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1980年   1篇
  1978年   2篇
  1954年   2篇
排序方式: 共有3050条查询结果,搜索用时 31 毫秒
81.
Jan ílený 《Tectonophysics》2004,383(3-4):133-147
The retrieval of earthquake moment tensor (MT) requires the response of the medium, in which seismic waves travel from the hypocenter to the stations, to be known. In inverting long-period (LP) seismic data (teleseismic and LP regional records), a gross earth model is sufficient; with decreasing periods, a more detailed model is needed. This is the case when waveforms of weak earthquakes at regional distances are to be inverted. Regional moment tensors (RMTs) of mostly Mediterranean earthquakes are determined on a routine basis by the Swiss Seismological Survey (SED) by using averaged models of the earth's crust. By inverting broad-band records of the Mw=4.8 earthquake near Udine, N Italy, on Feb. 14, 2002, we tested the sensitivity of the MT solution with respect to possible errors in the earth model used and in the location of the hypocenter depth. We perturbed the P and S velocities and the thickness in the 1-D earth model in the range from 3% to 30% of the parameter values and constructed estimates of confidence regions of the MT and error bars of the source time function (STF) and scalar moment in three frequency bands. Similarly, these error characteristics were determined assuming a mislocation in the hypocenter depth. We found that, in the band of periods from 25 to 50 s, the mechanism is resolved well (at the confidence level 95% at least) up to an earth model uncertainty of 30%, in the passband 10–25 s up to about 10%, but it is undetermined completely at periods of 5–10 s. An error in hypocenter depth of as much as double the value reported by the location procedure does not destroy the resolution of the mechanism at periods above 10 s. In the RMT catalog of the SED, earthquakes of Mw greater than about 3.5 are processed at periods above 30 s; thus, the solutions for these events are robust with respect to a possible uncertainty in the earth model used. Mechanisms of weaker earthquakes, retrieved from short periods, should be interpreted with caution.  相似文献   
82.
INTRODUCTIONSincethediscoveryofeclogiteswithcoesiteanddia mondinclusionsrelatedtothecontinent continentcollision orogenyenvironment,theultrahigh pressuremetamorphism(UHPM )intheDabie Suluhasarousedgreatinterestinmanygeologists (Liouetal .,1994 ;Xuetal.,1992 ) .Experimentalstudieshaveprovedthatsuchmineralsasdia mond ,coesiteandomphaciteoccurredat 2 - 5GPa (andatthecorrespondingtemperatures) (Stevenetal.,1982 ;MirwaldandMasonne ,1980 ) .However,itdoesnotmeanthatthemetamorphicrockscanbe…  相似文献   
83.
Sampling and testing are conducted on groundwater depth and vegetation coverage in the 670 km2 of the Sangong River Basin and semi-variance function analysis is made afterwards on the data obtained by the application of geo-statistics. Results showed that the variance curve of the groundwater depth and vegetation coverage displays an exponential model. Analysis of sampling data in 2003 indicates that the groundwater depth and vegetation coverage change similarly in space in this area. The Sangong River Basin is composed of upper oasis, middle ecotone and lower sand dune. In oasis and ecotone, influenced by irrigation of the adjoining oasis, groundwater level has been raised and soil water content also increased compared with sand dune nearby, vegetation developed well. But in the lower reaches of the Sangong River Basin, because of descending of groundwater level, soil water content decreased and vegetation degenerated. From oasis to abandoned land and desert grassland, vegetation coverage and groundwater level changed greatly with significant difference respectively in spatial variation. Distinct but similar spatial variability exists among the groundwater depth and vegetation coverage in the study area, namely, the vegetation coverage decreasing (increasing) as the groundwater depth increases (decreases). This illustrates the great dependence of vegetation coverage on groundwater depth in arid regions and further implies that among the great number of factors affecting vegetation coverage in arid regions, groundwater depth turns out to be the most determinant one.  相似文献   
84.
The basal depth of the outer layer with internal magnetic sources was calculated from magnetic data available within a roughly 500 km wide and 1200 km long area, running from central Germany to southern Italy. The dataset, deriving from different aeromagnetic surveys, is reduced to the reference altitude of 3000 m a.s.l. and a reference year of 1980.0. The adopted method, which transforms the spatial data into the frequency domain, provides a relationship between the two-dimensional spectrum of the magnetic anomalies and the top and centroid depths of the magnetic sources. The magnetic layer bottom depth (MLBD) thus obtained is 29-33 km deep in the stable areas (central Europe Variscan units, Corsica-Sardinia Variscan block) and corresponds to the Moho, having an average temperature of 560 °C. From the Alps to the Apennines, MLBD ranges between 22 and 28 km and is clearly shallower than the Moho. In these units, the wide variation of MLBD appears to be compatible with the presence of shallow magnetised bodies, consisting of lower crustal rocks (Ivrea-Verbano zone), ophiolitic units (Penninic zone and Voltri Massif) and intrasedimentary basic volcanic bodies (Po Basin). An average value of 25 km can be attributed to MLBD, which corresponds to a temperature of 550 °C. In the peri-Tyrrhenian zone and the Ligurian Sea, MLBD is below the Moho, which ranges from 17 to 20 km depth, and it has a temperature matching approximately to the Curie temperature of magnetite (580 °C).  相似文献   
85.
The aim of this study is to shed light on the hydrogeochemical characteristics of karst underground waters at shallow depth in Guiyang City, Guizhou Province with an emphasis on the geochemistry of major elements. Guiyang City bears abundant underground waters and it is also an important representative of the karst areas throughout the world. Ca^2 and Mg^2 are the dominant cations, accounting for 81% -99.7% of the total, and HCO3^- and SO4^2- are the dominant anions. Weathering of limestones and dolostones is the most important factor controlling the hydrogeochemistry of underground waters, and weathering of sulfate and evaporite rocks is less important. Moreover, the precipitation and human activities also have a definite influence on the hydrogeoehemistry of underground waters in the region studied.  相似文献   
86.
Curie-point depth map of Turkey   总被引:3,自引:0,他引:3  
  相似文献   
87.
Snow availability in Alpine catchments plays an important role in water resources management. In this paper, we propose a method for an optimal estimation of snow depth (areal extension and thickness) in Alpine systems from point data and satellite observations by using significant explanatory variables deduced from a digital terrain model. It is intended to be a parsimonious approach that may complement physical‐based methodologies. Different techniques (multiple regression, multicriteria analysis, and kriging) are integrated to address the following issues: We identify the explanatory variables that could be helpful on the basis of a critical review of the scientific literature. We study the relationship between ground observations and explanatory variables using a systematic procedure for a complete multiple regression analysis. Multiple regression models are calibrated combining all suggested model structures and explanatory variables. We also propose an evaluation of the models (using indices to analyze the goodness of fit) and select the best approaches (models and variables) on the basis of multicriteria analysis. Estimation of the snow depth is performed with the selected regression models. The residual estimation is improved by applying kriging in cases with spatial correlation. The final estimate is obtained by combining regression and kriging results, and constraining the snow domain in accordance with satellite data. The method is illustrated using the case study of the Sierra Nevada mountain range (Southern Spain). A cross‐validation experiment has confirmed the efficiency of the proposed procedure. Finally, although it is not the scope of this work, the snow depth is used to asses a first estimation of snow water equivalent resources.  相似文献   
88.
Haloxylon ammodendron is a desert shrub used extensively in China for restoring degraded dry lands. An understanding of the water source used by H. ammodendron plantations is critical achieving sustainable vegetation restoration. We measured mortality, shoot size, and rooting depth in 5‐, 10‐, 20‐, and 40‐year‐old H. ammodendron plantations. We examined stable isotopic ratios of oxygen (δ18O) in precipitation, groundwater, and soil water in different soil layers and seasons, and in plant stem water to determine water sources at different shrub ages. We found that water acquisition patterns in H. ammodendron plantations differed with plantation age and season. Thus, the main water source for 5‐year‐old shrubs was shallow soil water. Water sources of 10‐year‐old shrubs shifted depending on the soil water conditions during the season. Although their tap roots could absorb deep soil water, the plantation main water sources were from soil water, and about 50% of water originated from shallow and mid soil. This pattern might occur because main water sources in these plantations were changeable over time. The 20‐ and 40‐year‐old shrubs acquired water mainly from permanent groundwater. We conclude that the main water source of a young H. ammodendron plantation was soil water recharged by precipitation. However, when roots reached sufficient depth, water originated mainly from the deep soil water, especially in the dry season. The deeply rooted 20‐ and 40‐year‐old shrubs have the ability to exploit a deep and reliable water source. To achieve sustainability in these plantations, we recommend a reduction in the initial density of H. ammodendron in the desert‐oasis ecotone to decelerate the consumption of shallow soil water during plantation establishment.  相似文献   
89.
Submarine groundwater discharge (SGD) plays an important role in coastal biogeochemical processes and hydrological cycles, particularly off volcanic islands in oligotrophic oceans. However, the spatial and temporal variations of SGD are still poorly understood owing to difficulty in taking rapid SGD measurements over a large scale. In this study, we used four airborne thermal infrared surveys (twice each during high and low tides) to quantify the spatiotemporal variations of SGD over the entire coast of Jeju Island, Korea. On the basis of an analytical model, we found a linear positive correlation between the thermal anomaly and squares of the groundwater discharge velocity and a negative exponential correlation between the anomaly and water depth (including tide height and bathymetry). We then derived a new equation for quantitatively estimating the SGD flow rates from thermal anomalies acquired at two different tide heights. The proposed method was validated with the measured SGD flow rates using a current meter at Gongcheonpo Beach. We believe that the method can be effectively applied for rapid estimation of SGD over coastal areas, where fresh groundwater discharge is significant, using airborne thermal infrared surveys.  相似文献   
90.
The strong vertical gradient in soil and subsoil saturated hydraulic conductivity is characteristic feature of the hydrology of catchments. Despite the potential importance of these strong gradients, they have proven difficult to model using robust physically based schemes. This has hampered the testing of hypotheses about the implications of such vertical gradients for subsurface flow paths, residence times and transit time distribution. Here we present a general semi‐analytical solution for the simulation of 2D steady‐state saturated‐unsaturated flow in hillslopes with saturated hydraulic conductivity that declines exponentially with depth. The grid‐free solution satisfies mass balance exactly over the entire saturated and unsaturated zones. The new method provides continuous solutions for head, flow and velocity in both saturated and unsaturated zones without any interpolation process as is common in discrete numerical schemes. This solution efficiently generates flow pathlines and transit time distributions in hillslopes with the assumption of depth‐varying saturated hydraulic conductivity. The model outputs reveal the pronounced effect that changing the strength of the exponential decline in saturated hydraulic conductivity has on the flow pathlines, residence time and transit time distribution. This new steady‐state model may be useful to others for posing hypotheses about how different depth functions for hydraulic conductivity influence catchment hydrological response. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号