首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   30篇
  国内免费   11篇
测绘学   29篇
大气科学   1篇
地球物理   43篇
地质学   26篇
海洋学   149篇
综合类   9篇
自然地理   17篇
  2023年   3篇
  2022年   2篇
  2021年   4篇
  2020年   13篇
  2019年   16篇
  2018年   12篇
  2017年   13篇
  2016年   12篇
  2015年   5篇
  2014年   10篇
  2013年   26篇
  2012年   5篇
  2011年   9篇
  2010年   5篇
  2009年   9篇
  2008年   10篇
  2007年   10篇
  2006年   13篇
  2005年   9篇
  2004年   7篇
  2003年   13篇
  2002年   12篇
  2001年   2篇
  2000年   6篇
  1999年   3篇
  1998年   3篇
  1997年   8篇
  1996年   12篇
  1995年   2篇
  1994年   2篇
  1993年   6篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
排序方式: 共有274条查询结果,搜索用时 93 毫秒
11.
This special issue of Marine Geophysical Researches presents five papers dealing with GEBCO, the General Bathymetric Chart of the Oceans, which celebrated its Centennial in April 2003, hosted by the International Hydrographic Bureau and the Principality of Monaco. Over the past 103 years GEBCO has been the sole body dedicated to compiling all available data to produce standardized maps of the oceans and seas covering 71% of planet Earth. Over time GEBCO has undergone a complete transformation as sparse 500 m contours on paper charts were replaced by digital grids with ever-increasing resolution. The 2003 Centennial saw the release on two CDROMS with the first global 1′ grid, produced by methods unheard of in 1984, when GEBCO’s last 6th Edition paper chart set was published. In GEBCO’s second century, the thrust is towards global grids that will capture the resolutions available with evolving deep-water swath mapping technologies, as well as vast improvement in the details of the shallow continental shelves that have traditionally been the preserve of the hydrographic community. As little more than 10% of the oceans have been mapped to the desired level of detail, there is much to be done. However refinements in satellite altimetry appear to offer an interim stop-gap as more multi-beam sonars ply the oceans and as the littoral countries of the world map their adjacent marine areas for submission under Article 76 of UNCLOS (United Nations, 1983, 1999). In addition GEBCO is becoming increasingly proactive, with outreach to the public via the internet and a new GEBCO Map of the World, active data-scrounging, and encouraging development of the first drifting buoys for acquiring data in the inaccessible areas of the Antarctic, SW Pacific, and Arctic Oceans.  相似文献   
12.
The analysis of multibeam bathymetric data of the Southwest Indian Ridge(SWIR) domain between the triple junction traces from 68° E to theRodrigues Triple Junction (RTJ; 70° E) reveals the evolution of thisridge since magnetic anomaly 4 (8 Ma). Image processing has been used toshow that the horizontal component of strain due to a network of normal stepfaults increases dramatically between 69°30 E and the RTJ. Thisarea close to the RTJ is characterized by a deep graben at the foot of thetriple junction trace on the African plate and by a narrow fault-boundedridge that joins an offset of the trace on the Antarctic plate. In thatarea, spreading is primarily amagmatic and dominated by tectonic extensionprocesses. To the west of 69°30 E, some lobate bathymetricfeatures atop of a large topographic high suggest volcanic constructions.Between 68°10 E and 69°25 E the southern flank of theSWIR domain is wider than the northern one and is characterized by a series of 7 en echelon bathymetric highs similar in size,shape and orientation to the one centred at 69°30E near the present-day triple junction. Their en echelon organization along the triple junction trace on the Antarctic plate and the typical lack of conjugated parts on the northern flank show that these bathymetric highs have been shifted to the south by successive northward relocalisations of the SWIR rifting zone. This evolution results in the asymmetric spreading of the SWIR in the survey area. The off-axis bathymetric highs connect to the offsets of the triple junction trace on the Antarctic plate when the Southeast Indian Ridges lightly lengthenstoward the northwest and the triple junction is relocated to the north. We propose that the SWIR lengthens toward the northeast with two propagation modes: 1) a continuous and progressive propagation with distributed deformation in preexisting crust of the Central Indian Ridge, 2) a discontinuous propagation with focusing of the deformation in a rift zone when the triple junction migrates rapidly to the north. The modes of propagation of the SWIR are related to different localisation and distribution of strain which are in turn controlled by changes of the triple junction configurations due to propagation, recession or a symmetric spreading on the Central and Southeast Indian Ridges.  相似文献   
13.
The structure of the Mid-Atlantic Ridge at 5°S was investigated during a recent cruise with the FS Meteor. A major dextral transform fault (hereafter the 5°S FZ) offsets the ridge left-laterally by 80 km. Just south of the transform and to the west of the median valley, the inside corner (IC – the region bounded by the ridge and the active transform) is marked by a major massif, characterized by a corrugated upper surface. Fossil IC massifs can also be identified further to the west. Unusually, a massif almost as high as the IC massif also characterizes the outside corner (OC) south of the inactive fracture zone and to the east of the median valley. This OC massif has axis-parallel dimensions identical to the IC massif and both are bounded on their sides closest to the spreading axis by abrupt, steep slopes. An axial volcanic ridge is well developed in the median valley both south of the IC/OC massifs and in an abandoned rift valley to the east of the OC massif, but is absent along the new ridge-axis segment between the IC and OC massifs. Wide-angle seismic data show that between the massifs, the crust of the median valley thins markedly towards the FZ. These observations are consistent with the formation of the OC massif by the rifting of an IC core complex and the development of a new spreading centre between the IC and OC massifs. The split IC massif presents an opportunity to study the internal structure of the footwall of a detachment fault, from the corrugated fault surface to deeper beneath the fault, without recourse to drilling. Preliminary dredging recovered gabbros from the scarp slope of the rifted IC massif, and serpentinites and gabbros from the intersection of this scarp with the corrugated surface. This is compatible with a concentration of serpentinites along the detachment surface, even where the massif internally is largely plutonic in nature.  相似文献   
14.
‘No portion of the American continent is perhaps so rich in wonders as the Yellow Stone’ (F.V. Hayden, September 2, 1874)Discoveries from multi-beam sonar mapping and seismic reflection surveys of the northern, central, and West Thumb basins of Yellowstone Lake provide new insight into the extent of post-collapse volcanism and active hydrothermal processes occurring in a large lake environment above a large magma chamber. Yellowstone Lake has an irregular bottom covered with dozens of features directly related to hydrothermal, tectonic, volcanic, and sedimentary processes. Detailed bathymetric, seismic reflection, and magnetic evidence reveals that rhyolitic lava flows underlie much of Yellowstone Lake and exert fundamental control on lake bathymetry and localization of hydrothermal activity. Many previously unknown features have been identified and include over 250 hydrothermal vents, several very large (>500 m diameter) hydrothermal explosion craters, many small hydrothermal vent craters (1–200 m diameter), domed lacustrine sediments related to hydrothermal activity, elongate fissures cutting post-glacial sediments, siliceous hydrothermal spire structures, sublacustrine landslide deposits, submerged former shorelines, and a recently active graben. Sampling and observations with a submersible remotely operated vehicle confirm and extend our understanding of the identified features. Faults, fissures, hydrothermally inflated domal structures, hydrothermal explosion craters, and sublacustrine landslides constitute potentially significant geologic hazards. Toxic elements derived from hydrothermal processes also may significantly affect the Yellowstone ecosystem.  相似文献   
15.
The Darwin Rise has been proposed so many times and in so many forms and places that the time has come to make a more comprehensive examination of the region. Lying on the NW Pacific Plate between the Geisha Guyots, the Mid-Pacific Mountains, the equator, and the trenches, the region is roughly bounded by magnetic anomaly M20 (147 Ma). It was subjected to a massive outpouring of lava about 105 to 120 Ma, which created the guyots and seamounts in that region. Guyots are excellent tools for studying events of long ago because they eroded in the same lowstand in the Cretaceous and guyot relief, therefore, is a surrogate for paleo-sealevel. The relief is derived by subtracting the break depth of the summit plateau of a guyot from the regional depth. Guyot relief would necessarily be less in the center than to the periphery if the feature formed on a pre-existing rise, as has been postulated. The existence of a paleo-Darwin Rise would give concentric contours for the region in question. Of the sixty guyots used in this study, thirty-seven of these guyots were surveyed using SASS multibeam in the Marcus-Wake seamount group. Twenty-three guyots were surveyed using random track single-beam sonar surveys. An entirely different scenario is shown. Data revealed a major fracture passing through the area coevally or after the guyots formed. Because the depths to the summit are not the same now, vertical tectonics occurred after subaerial erosion. This means the fracture formed during and after the erosion (roughly 105 Ma) and influenced the normal sequence of events in guyot formation. Depending on how one deciphers trends through the Hess Rise morass, SASS bathymetry shows a continuation of the Surveyor/Mendocino fracture zone swarm inside the M20 region to the NE of these data. The fracture swarm continues to the western Pacific trench system. Based on this information, if the Darwin Rise ever existed, it had to have done so elsewhere.  相似文献   
16.
A bathymetric survey of Kawah Ijen crater lake was conducted by acoustic sounding in 1996 to compare the lake morphology with those measured in 1922, 1925 and 1938, and to calculate the present lake volume. Even though the lake experienced several hydrothermal eruptions, the maximum depth became shallower (182 m) than before (200 m), resulting in a reduced lake volume (3.0×107 m3).Fifty-two major and minor constituents including rare earth elements and polythionates (PT) of the lake waters at various depths were determined by ICP-AES, ICP-MS and HPLC, respectively. These ions except for several volatile elements are taken up by lake fringe through congruent dissolution of pyroclastics of Kawah Ijen volcano. Most ions are homogeneously distributed throughout the lake, although PT showed a considerable vertical variation. Rare earth elements (REE) in the Kawah Ijen water as well as those from other hyper-acidic crater lakes show distribution patterns likely due to the three rock dissolution (preferential, congruent and residual) types, and their logarithmic concentrations linearly depend upon the pH values of the lake waters.Using the PT degradation kinetics data, production rates of PT, injection rates of SO2 and H2S into the lake were estimated to be 114, 86 and 30 tons/day, respectively. Also travel time of the spring water at the Banyupahit Riverhead from Kawah Ijen was estimated to be 600–1000 days through the consideration of decreasing rates of PT. Molten sulfur stocks containing Sn, Cu, Bi sulfides and Pb-barite exposed on the inner crater slope were presumed to be extinct molten sulfur pools at the former lake bottom. This was strongly supported by the barite precipitation temperature estimated through the consideration of the temperature dependence of Pb-chlorocomplex formation.  相似文献   
17.
本文基于海浪波折射现象和浅水波理论,提出了一种基于单景高分辨率光学遥感影像的浅海地形提取方法。首先,基于浅水波理论推导出适用于浅海区域的水深与海浪波长、频率的定量关系,针对近岸光学遥感图像复杂的海浪特征,讨论了两种海浪波长提取方法,即FFT方法和剖面线法。然后提出了基于长距离波长波动分析的海浪频率计算方法,解决了单景遥感影像的波浪频率计算难题。最后,利用单景QuickBird高分辨率光学遥感影像,以海南岛三亚湾为研究区域进行了应用实验,结果表明,对12m以浅的浅海区域,在不需要任何辅助参数的情况下,反演获得了浅海地形(DEM),经与1:25000比例尺海图的水深对比验证,地形趋势吻合良好,反演水深的均方根误差为1.07m,相对水深误差为16.2%,表明该方法适合于浅海水下地形的提取,且具有无需实测水深数据和环境参数的支持的优点。  相似文献   
18.
斜向扩张是超慢速扩张洋中脊独特的构造特征,其地形分段特征明显区别于经典的快速-慢速端元洋中脊模型,是理解超慢速扩张洋中脊地质过程的重要切入点。基于西南印度洋中脊Indomed-Gallieni和Shaka-DuToit段多波束地形数据,分析了不同斜向扩张角度(α)洋中脊的地形分段样式。其中,46.5°~47.5°E(α=5°)、16°~25°E(α=10°)和48.5°~52°E(α=15°)为近正向扩张段,发育雁列式叠置的中央火山脊;47.5°~48.5°E(α=50°)和16°~25°E(α=60°)为斜向扩张段,仅在洋脊段中部形成中央火山脊。利用有限差分+颗粒法(FD+MIC)数值模拟技术研究了洋中脊应变分布特征对不同α值的响应,结合地形分析,认为斜向扩张角度和温度异常分布共同控制了洋中脊地形分段样式。近正向扩张洋中脊(α<20°)在温度异常处形成地壳伸展应变的集中区,有利于岩浆汇聚,发育雁列式叠置的中央火山脊,其位置随温度异常分布的变化而改变;斜向扩张洋中脊(α>20°)地壳伸展应变集中区的位置受斜向扩张几何样式控制,在洋脊段中部发育中央火山脊,对温度异常不敏感,形成位置长期固定的岩浆活动中心。  相似文献   
19.
Sea-floor bathymetric profiles exhibit features at many different scales of length; this suggests that they could be described as fractals. An algorithm interpolating a fractal line between points has been used to reconstruct bathymetric profiles from a few data points. In general, this fractal line has the same Fourier amplitude spectrum as real bathymetry, and, if the parameters of the interpolation are suitably chosen, it has a very similar appearance. The success of this fractal reconstruction algorithm for the sea-floor raises the possibility that it could be used to extrapolate, from data collected at one scale, the properties of the sea-floor at finer scales, and that similar techniques could be used to interpolate a surface between bathymetric profiles. The fractal character is a sign that the processes that shape the sea-floor are scale invariant and suggests that the renormalization group technique could be used to model these processes.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号