首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   38篇
  国内免费   6篇
地球物理   102篇
地质学   9篇
海洋学   1篇
  2022年   4篇
  2021年   1篇
  2020年   6篇
  2019年   3篇
  2018年   7篇
  2017年   5篇
  2016年   9篇
  2015年   9篇
  2014年   9篇
  2013年   4篇
  2012年   5篇
  2011年   5篇
  2010年   5篇
  2009年   9篇
  2008年   5篇
  2007年   5篇
  2006年   3篇
  2005年   5篇
  2004年   4篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1997年   2篇
排序方式: 共有112条查询结果,搜索用时 31 毫秒
81.
The outrigger system is an effective means of controlling the seismic response of core‐tube type tall buildings by mobilizing the axial stiffness of the perimeter columns. This study investigates the damped‐outrigger, incorporating the buckling‐restrained brace (BRB) as energy dissipation device (BRB‐outrigger system). The building's seismic responses are expected to be effectively reduced because of the high BRB elastic stiffness during minor earthquakes and through the stable energy dissipation mechanism of the BRB during large earthquakes. The seismic behavior of the BRB‐outrigger system was investigated by performing a spectral analysis considering the equivalent damping to incorporate the effects of BRB inelastic deformation. Nonlinear response history analyses were performed to verify the spectral analysis results. The analytical models with building heights of 64, 128, and 256 m were utilized to investigate the optimal outrigger elevation and the relationships between the outrigger truss flexural stiffness, BRB axial stiffness, and perimeter column axial stiffness to achieve the minimum roof drift and acceleration responses. The method of determining the BRB yield deformation and its effect on overall seismic performance were also investigated. The study concludes with a design recommendation for the single BRB‐outrigger system.  相似文献   
82.
The implementation of buckling‐restrained braces (BRBs) for new reinforced concrete frame (RCF) constructions is limited. This study investigates the seismic forces and stability in the BRBs and gussets of a 2‐story full‐scale RCF specimen by using Abaqus models and a newly proposed stability evaluation method. The hybrid and cyclic loading test results are accurately predicted by the Abaqus analyses. Existing methods for computing the gusset interface forces for steel buildings from both the brace and the frame actions are compared with the Abaqus results. The applicability of these methods for the BRB‐RCF design is critically evaluated. It is confirmed that the Parallel‐2 method is suitable for estimating the BRB force demand imposed on the corner gusset and the generalized uniform force method is good for the corner gusset at the base. In addition, existing stability evaluation methods for BRBs and gussets are applied to investigate the out‐of‐plane (OOP) buckling of the first‐story BRB observed at the end of tests. The proposed stability model incorporates the BRB restrainer's flexural effects and 4 rotational springs in assessing the BRB's buckling. This model confirms that the BRB and the gusset's OOP buckling limit states could be coupled and must be evaluated together. By incorporating the flexural effects of the steel casing and the infilled grout, the proposed model satisfactorily predicts the OOP buckling of the first‐story BRB and gussets. These research results can be used for the implementation of BRBs in new RC frame constructions.  相似文献   
83.
The reinforced concrete (RC) shear wall serves as one of the most important components sustaining lateral seismic forces. Although they allow advanced seismic performance to be achieved, RC shear walls are rather difficult to repair once the physical plastic hinge at the bottom part has been formed. To overcome this, a damage‐controllable plastic hinge with a large energy dissipation capacity is developed herein, in which the sectional forces are decoupled and sustained separately by different components. The components sustaining the axial and the shear forces all remain elastic even under a rarely occurred earthquake, while the bending components yield and dissipate seismic energy during a design‐level earthquake. This design makes the behavior of the system more predictable and thus more easily customizable to different performance demands. Moreover, the energy dissipation components can be conveniently replaced to fully restore the occupancy function of a building. To examine the seismic behavior of the newly developed component, 3 one third‐scale specimens were tested quasi‐statically, including 1 RC wall complying with the current design codes of China and 2 installed with the damage‐controllable plastic hinges. Each wall was designed to have the same strength. The experimental results demonstrated that the plastic‐hinge‐supported walls had a better energy dissipation capacity and damage controllability than the RC specimen. Both achieved drift ratios greater than 3% under a steadily increasing lateral force.  相似文献   
84.
以设置防屈曲支撑(Buckling-Restrained Braces,BRB)的双柱式桥墩体系为研究对象,系统分析上部结构惯性力在该体系中的传递机理;以某3×30m公路高架桥为工程背景,采用非线性时程反应分析法研究BRB的设置方式及参数取值对桥梁地震反应的影响规律,揭示BRB在双柱式桥墩中的工作机理。其研究结论为:(1)对于设置BRB的双柱式桥墩,当BRB未屈服时,通过其轴向刚度改变结构体系的传力路径,墩底弯矩、剪力降低,但墩底轴力改变量将增大,即以较大的墩身轴力改变量换取较小的墩底弯矩及剪力。(2)在BRB屈服的情况下,BRB通过改变下部结构的传力路径及滞回耗能双重机制影响结构的地震反应,BRB耗能作用将降低墩身的轴力改变量,使减震效果更优。(3)双柱式桥墩横桥向设置BRB是一种较为有效的减震体系,但其减震效果与BRB具体布置方式及力学参数取值有关。  相似文献   
85.
This paper presents a ten-element hybrid (experimental-numerical) simulation platform, referred to as UT10, which was developed for running hybrid simulations of braced frames with up to ten large-capacity physical brace specimens. This paper presents the details of the development of different components of UT10 and an adjustable yielding brace (AYB) specimen, which was designed to perform hybrid simulations with UT10. As the first application of UT10, a five-story buckling-restrained braced frame and a special concentrically braced frame (BRBF and SCBF) were designed and tested with AYB specimens and buckling specimens representing the braces. Cyclic tests of the AYB, one- and three-element hybrid simulations of the BRBF, and four-element hybrid simulations of the SCBF inside the UT10 confirmed the functionality of UT10 for running hybrid simulations on multiple specimens. The tests also indicated that AYB was capable of producing a stable hysteretic response with characteristics similar to BRBs. Comparison of the results of the hybrid simulations of the BRBF and SCBF with their fully numerical models showed that the modeling inaccuracies of the yielding braces could potentially affect the global response of the multi-story braced frames further emphasizing the need for experimental calibration or hybrid simulation for achieving more accurate response predictions. UT10 provides a simple and reconfigurable platform that can be used to achieve a realistic understanding of the seismic response of multi-story frames with yielding braces, distinguish their modeling limitations, and improve different modeling techniques available for their seismic response prediction.  相似文献   
86.
There has been an increasing interest in using residual deformation as a seismic performance indicator for earthquake resistant building design. Self-centering braced structural systems are viable candidates for minimizing residual deformations following a major earthquake. Hence, this study proposes an alternative type of buckling restrained brace (BRB) with externally attached posttensioned (PT-BRB) carbon fiber composite cables (CFCCs). The steel core of the brace is used as an energy dissipator, whereas the CFCCs provide the self-centering force for minimizing residual story drifts. Three proof-of-concept specimens are designed, fabricated, and cyclically tested at different posttensioning force levels. The CFCC behavior to obtain cyclic response, including the anchorage system, is examined closely. A parametric study is also conducted to show the effect of the different configurations of PT-BRBs on the inelastic response. Furthermore, optimal brace parameters are discussed to realize design recommendations. The results indicated that the implementation of partially self-centering BRBs in building frames can lead to the target residual displacements. A stable behavior is obtained for the proposed PT-BRBs when subjected to the loading protocol specified in the American Institute of Steel Construction (AISC) 2016 Seismic Provisions.  相似文献   
87.
防压曲支撑在结构抗震加固中的应用与展望   总被引:2,自引:0,他引:2  
防压曲支撑(BRB)既可提高结构的抗侧刚度,又有较强的地震耗能能力,可用于结构抗震加固中。本文叙述并讨论了防压曲支撑用于结构抗震加固的过程及特点,并列举了一个工程实例。该技术在国外已得到广泛应用,本文针对中国大陆的情况给出了一些建议。  相似文献   
88.
A novel type of angle steel buckling‐restrained brace (ABRB) has been developed for easier control on initial geometric imperfection in the core, more design flexibility in the buckling restraining mechanism and easier assembly work. The steel core is composed of four angle steels to form a non‐welded cruciform shape restrained by two external angle steels, which are welded longitudinally to form an external tube. Component test was conducted on seven ABRB specimens under uniaxial quasi‐static cyclic loading. The test results reveal that the consistency between the actual and design behavior of ABRB can be well achieved without the effect of weld in the core. The ABRBs with proper details exhibited stable cyclic behavior and satisfactory cumulative plastic ductility capacity, so that they can serve as effective hysteretic dampers. However, compression–flexure failure at the steel core projection was found to be the primary failure mode for the ABRBs with hinge connections even though the cross‐section of the core projection was reinforced two times that of the yielding segment. The failure mechanism is further discussed by investigating the NuMu correlation curve. It is found that the bending moment response developed in the core projection induced by end rotation was the main cause for such a failure mode, and it is suggested that core projection should be kept within elastic stage under the possible maximum axial load and bending moment response. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
89.
本文提出了一种新型形状记忆合金(Shape Memory Alloy,SMA)-黏弹性阻尼器(ViscoelasticDamper,VED)自复位支撑,设计了普通预应力筋自复位支撑钢框架与SMA-VED自复位支撑钢框架。采用组合模型以及改进材料模型准确模拟了支撑的力学行为,详细讨论了考虑构件失效的模拟方法,通过试验确定了VED的失效应变范围,最后基于概率统计方法进行了易损性分析以及全周期风险分析。研究发现: SMA-VED自复位支撑可显著提升框架抗震性能;倒塌风险以及残余变形超越概率均显著低于普通预应力筋自复位支撑钢框架,下降比例最高超过50%。预应力筋断裂失效导致框架倒塌风险可提高5倍以上; SMA-VED自复位支撑失效会造成残余变形超越概率有所上升但幅度不大。总体来说,SMA-VED自复位支撑钢框架具备更好的地震鲁棒性。  相似文献   
90.
填充墙具有显著的刚度和承载力贡献。建筑结构震害调查发现,不开洞横墙的破坏程度远小于开洞纵墙的破坏程度,从宏观现象可判断大部分多层建筑的破坏主要由结构纵向运动造成。为研究横墙在地震作用下的性能及其对结构整体动力响应的影响,以经受2021年5月21日云南漾濞6.4级地震震害的花椒园小学教学楼为研究对象,按当地抗震计算参数进行弹塑性时程分析。采用等效斜压杆模拟横向填充墙,设置无填充墙框架结构、带黏土砖墙的框架结构、带空心砖墙的框架结构和带加气混凝土砌块填充墙的框架结构模型,选取10组地震波横向输入。研究结果表明,4种结构自振周期均处于具有统计学意义的平台段,平均加速度响应较接近,质量和刚度变化不会使结构加速度产生规律的变化;受结构自重影响,无填充墙的框架结构底部剪力小于带填充墙的框架结构,带填充墙的框架结构位移远小于无填充墙的框架结构;带有多道不开洞横墙的多层框架结构的破坏主要是由结构纵向破坏引起的。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号