首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4428篇
  免费   738篇
  国内免费   1188篇
测绘学   333篇
大气科学   590篇
地球物理   781篇
地质学   2563篇
海洋学   851篇
天文学   110篇
综合类   245篇
自然地理   881篇
  2024年   26篇
  2023年   87篇
  2022年   224篇
  2021年   198篇
  2020年   208篇
  2019年   250篇
  2018年   194篇
  2017年   202篇
  2016年   239篇
  2015年   262篇
  2014年   325篇
  2013年   374篇
  2012年   327篇
  2011年   367篇
  2010年   245篇
  2009年   341篇
  2008年   321篇
  2007年   278篇
  2006年   281篇
  2005年   244篇
  2004年   214篇
  2003年   158篇
  2002年   147篇
  2001年   128篇
  2000年   134篇
  1999年   105篇
  1998年   95篇
  1997年   84篇
  1996年   56篇
  1995年   44篇
  1994年   31篇
  1993年   25篇
  1992年   15篇
  1991年   9篇
  1990年   13篇
  1989年   9篇
  1988年   20篇
  1987年   9篇
  1986年   17篇
  1985年   17篇
  1984年   10篇
  1983年   3篇
  1982年   8篇
  1981年   8篇
  1980年   1篇
  1974年   1篇
排序方式: 共有6354条查询结果,搜索用时 15 毫秒
31.
Most marginal seas in the North Pacific are fed by nutrients supported mainly by upwelling and many are undersaturated with respect to atmospheric CO2 in the surface water mainly as a result of the biological pump and winter cooling. These seas absorb CO2 at an average rate of 1.1 ± 0.3 mol C m−2yr−1 but release N2/N2O at an average rate of 0.07 ± 0.03 mol N m−2yr−1. Most of primary production, however, is regenerated on the shelves, and only less than 15% is transported to the open oceans as dissolved and particulate organic carbon (POC) with a small amount of POC deposited in the sediments. It is estimated that seawater in the marginal seas in the North Pacific alone may have taken up 1.6 ± 0.3 Gt (1015 g) of excess carbon, including 0.21 ± 0.05 Gt for the Bering Sea, 0.18 ± 0.08 Gt for the Okhotsk Sea; 0.31 ± 0.05 Gt for the Japan/East Sea; 0.07 ± 0.02 Gt for the East China and Yellow Seas; 0.80 ± 0.15 Gt for the South China Sea; and 0.015 ± 0.005 Gt for the Gulf of California. More importantly, high latitude marginal seas such as the Bering and Okhotsk Seas may act as conveyer belts in exporting 0.1 ± 0.08 Gt C anthropogenic, excess CO2 into the North Pacific Intermediate Water per year. The upward migration of calcite and aragonite saturation horizons due to the penetration of excess CO2 may also make the shelf deposits on the Bering and Okhotsk Seas more susceptible to dissolution, which would then neutralize excess CO2 in the near future. Further, because most nutrients come from upwelling, increased water consumption on land and damming of major rivers may reduce freshwater output and the buoyancy effect on the shelves. As a result, upwelling, nutrient input and biological productivity may all be reduced in the future. As a final note, the Japan/East Sea has started to show responses to global warming. Warmer surface layer has reduced upwelling of nutrient-rich subsurface water, resulting in a decline of spring phytoplankton biomass. Less bottom water formation because of less winter cooling may lead to the disappearance of the bottom water as early as 2040. Or else, an anoxic condition may form as early as 2200 AD. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
32.
During three cruises in the Black Sea, organised in July 1995 and April–May 1997, biological and chemical parameters that can influence the carbon budget were measured in the water column on the NW shelf, particularly in the mixing zone with Danube River waters. We observed in early spring (end of April–May) conditions an important input of freshwater organisms that enhanced the microbial activity in the low salinity range. High bacterial activity regenerates nitrogen in the form of nitrates, but is also responsible for an important consumption of ammonium and phosphate, leading to a high N/P ratio and a strong deficit in phosphorus. The consequence is a limitation of phytoplankton development but also a production of carbohydrates that accumulate all along the salinity gradient. These mechanisms are responsible for a seasonal accumulation of dissolved organic carbon (DOC) that increases from 210 μM in winter to about 280 μM in summer. All this excess DOC disappears during winter, probably degraded by bacterial activity. The degradation of carbon-rich organic matter increases the phosphorus demand by bacteria bringing limitation to phytoplankton primary production.  相似文献   
33.
The biogeochemistry of organic matter in a macrotidal estuary, the Loire, France, has been studied for two years during different seasons. Both particulate matter and sediment have been sampled in the riverine zone, in the maximum turbidity zone and in the ocean near the river mouth. Two techniques have been used: carbon isotopic ratio determination and analysis of lipid-marker signatures in the n-alkane, n-alkene and fatty acid series. For the period corresponding to the output of the maximum turbidity zone in the ocean, the complete change of organic matter, continental in nature in the inner estuary, pure marine in the outer estuary is well illustrated by the decrease of δ13C values and of carbon preference index of n-alkanes. Input sources of organic matter by continental plants, plankton and micro-organisms are discussed from biogeochemical-marker analyses data along with the processes of accumulation of particles and their evolution with the season. Some criteria for evidencing the nature of various organic-matter pools are assessed and compared in different chemical-marker series as follows: high molecular weight n-alkanes and fatty acids, perylene for continental imprints, polyunsaturated 18-, 20- and 22-carbon fatty acids, n-C17, n-alkenes and squalene for algae imprints, branched iso and anteiso fatty acids, Δ11-C18:1 for microbial imprints.  相似文献   
34.
Winter-spring phytoplankton blooms in Dabob Bay, Washington   总被引:4,自引:2,他引:4  
Scientific investigations in Dabob Bay, Washington State, USA, have been extensive since the early 1960s, but phytoplankton blooms have been studied mostly with regard to chlorophyll concentrations and little is known about the phytoplankton species themselves. Here we provide information on the species present, their abundances during blooms, their contribution to organic carbon concentrations and the ability of some phytoplankton species to produce toxic aldehydes that may impact metazoan grazers.Multiple blooms of phytoplankton, dominated by diatoms, occurred in the late winter-early spring period, with depth-integrated chlorophyll levels ranging from <20 to 230 mg m−2 and peaks in February and April. The major bloom species included Skeletonema costatum, Thalassiosira spp. and Chaetoceros spp; Phaeocystis cf. pouchetii occurred in 2002 and 2004. Other taxa or groups of organisms that were sometimes abundant included unidentified small flagellates <10 μm in size and unidentified heterotrophic dinoflagellates. Large diatoms usually comprised most of the cell carbon, but a large, heterotrophic dinoflagellate, identified only as Gyrodinium “tear” because of its shape, was a major contributor to the microplankton carbon when present even in small numbers. Five Thalassiosira species and S. costatum were found to produce polyunsaturated aldehydes (PUA) that are known to affect copepod reproduction and hatching success. Our findings are similar to the few previous studies in the last four decades that included phytoplankton species and suggest long-term similarities and relative stability in the phytoplankton species present and their timing in Dabob Bay.  相似文献   
35.
A model based on that of Kishi et al. (2001) has been extended to 15 compartments including silicon and carbon cycles. This model was applied to Station A7 off Hokkaido, Japan, in the Northwestern Pacific. The model successfully simulated the observations of: 1. a spring bloom of diatoms; 2. large seasonal variations of nitrate and silicate concentrations in the surface water; and 3. large inter-annual variations in chlorophyll-a. It also reproduced the observed features of the seasonal variations of carbon dioxide partial pressure (pCO2)—a peak in pCO2 in winter resulting from deep winter convection, a rapid decrease in pCO2 as a result of the spring bloom, and an almost constant pCO2 from summer through fall (when the effect of increasing temperature cancels the effect of biological production). A comparison of cases with and without silicate limitation shows that including silicate limitation in the model results in: 1. decreased production by diatoms during summer; and 2. a transition in the dominant phytoplankton species, from diatoms to other species that do not take up silicate. Both of these phenomena are observed at Station A7, and our results support the hypothesis that they are caused by silicate limitation of diatom growth. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
36.
The Ocean Drilling Program Leg 175 recovered a unique series of stratigraphically continuous sedimentary sections along the SW African margin, an area which is presently affected by active coastal upwelling. The accumulation rates of organic and inorganic carbon are a major component of this record. Four Leg 175 sites (1082, 1084, 1085, 1087) are chosen as part of a latitudinal transect from the present northern to southern boundaries of the Benguela Current upwelling system, to decipher the Pliocene–Pleistocene history of biogenic production and its relationship with global and local changes in oceanic circulation and climate. The pattern of CaCO3 and Corg mass accumulation rates (MARs) over 0.25-Myr intervals indicates that the evolution of carbon burial is highly variable between the northern and the southern Benguela regions, as well as between sites that have similar hydrological conditions. This, as well as the presence over most locations of high-amplitude, rapid changes of carbon burial, reflect the partitioning of biogenic production and patterns of sedimentation into local compartments over the Benguela margin. The combined mapping of CaCO3 and Corg MARs at the study locations suggests four distinct evolutionary periods, which are essentially linked with major steps in global climate change: the early Pliocene, the mid-Pliocene warm event, a late Pliocene intensification of northern hemisphere glaciation and the Pleistocene. The early Pliocene spatially heterogeneous patterns of carbon burial are thought to reflect the occurrence of mass-gravitational movements over the Benguela slope which resulted in disruption of the recorded biogenic production. This was followed (3.5–3 Ma) by an episode of peak carbonate accumulation over the whole margin and, subsequently, by the onset of Benguela provincialism into a northern and a southern sedimentary regime near 2 Ma. This mid and late Pliocene evolution is interpreted as a direct response to changes in the ventilation of bottom and intermediate waters, as well as to dynamics of the subtropical gyral circulation and associated wind stress.  相似文献   
37.
南海南部约30 ka来沉积有机质的生物输入特征   总被引:7,自引:4,他引:7  
对位于南沙海区的1962柱状样中的有机质进行了热解色谱分析,估算了沉积有机质中水生生物输入和陆源生物输入的变化情况,得出了两种输入的高分辨率的堆积速率曲线,并依此探讨了有关的古海洋事件。发现Younger Dryas、Heinrich及Bond周期事件在本海区皆有表现,说明“西太平洋暖池”在末次冰期是不稳定的。  相似文献   
38.
The direct photooxidation of coloured dissolved organic matter (CDOM) to dissolved inorganic carbon (DIC) may provide a significant sink for organic carbon in the ocean. To calculate the rate of this reaction on a global scale, it is essential to know its quantum yield, or photochemical efficiency. We have determined quantum yield spectra, φ(λ), (moles DIC/mole photons absorbed) for 14 samples of seawater from environments ranging from a turbid, eutrophic bay to the Gulf Stream. The spectra vary among locations, but can be represented quite well by three pooled spectra for zones defined by location and salinity: inshore φ(λ)=e−(6.66+0.0285(λ−290)); coastal φ(λ)=e−(6.36+0.0140(λ−290)); and open ocean φ(λ)=e−(5.53+0.00914(λ−290)). Production efficiency increases offshore, which suggests that the most highly absorbing and quickly faded terrestrial chromophores are not those directly responsible for DIC photoproduction.  相似文献   
39.
A preliminary study of carbon system in the East China Sea   总被引:1,自引:0,他引:1  
In the central part of the East China Sea, the activity of CO2 in the surface water and total carbonate, pH and alkalinity in the water column were determined in winter and autumn of 1993. The activity of CO2 in the continental shelf water was about 50 ppm lower than that of surface air. This decrease corresponds to the absorption of about 40 gC/m2/yr of atmospheric CO2 in the coastal zone or 1 GtC/yr in the global continental shelf, if this rate is applicable to entire coastal seas. The normalized total carbonate contents were higher in the water near the coast and near the bottom. This increase toward the bottom may be due to the organic matter deposited on the bottom. This conclusion is supported by the distribution of pH. The normalized alkalinity distribution also showed higher values in the near-coast water, but in the surface water, indicating the supply of bicarbonate from river water. The residence time of the East China Sea water, including the Yellow Sea water, has been calculated to be about 0.8 yr from the excess alkalinity and the alkalinity input. Using this residence time and the excess carbonate, we can estimate that the amount of dissolved carbonate transported from the coastal zone to the oceanic basin is about 70 gC/m2/yr or 2 GtC/yr/area-of-global-continental-shelf. This also means that the rivers transport carbon to the oceans at a rate of 30 gC/m2/yr of the coastal sea or 0.8 GtC/yr/ area-of-global shelf, the carbon consisting of dissolved inorganic carbonate and terrestrial organic carbon decomposed on the continental shelf.  相似文献   
40.
Abstract. Benthic fluxes of dissolved N. Si and P nutrients, alkalinity, dissolved inorganic C (DIC), and O2 from sediments in the Gulf of Trieste (northern Adriatic, Italy) were measured monthly for 16 months, using laboratory incubated flux chambers at in siru temperatures in the dark. The annual average fluxes were: 02 = -19.3 ± 8.2, DIC = 13.7 ± 9.6, NO3 = -0.04 ± 0.16, NH4 = 0.3 ± 0.4. PO4= 4.001 ± 0.01, Si = 0.9 ± 0.1 mmol m-2 d-1, with strong temporal fluctuations. The highest effluxes of all nutrients and DIC were observed in the summer. Small effluxes of DIC and NH4 and influxes of Si and PO4 were observed in late winter. Only NH4 (ca. 50%) and Si (ca. 70%) fluxes were significantly correlated with temperature. This correlation suggests that the rate of downward input and the quality of sedimented organic matter (autochthonous and allochthonous) were superimposed on the temperature fluctuations. High DIC, NH4 and Si effluxes observed in May 1993 during low temperature were due to the degradation of sedimentary organic matter produced by an early spring bloom of benthic microalgae which occurred about 6 weeks earlies while the autumn phytoplankton bloom was simultaneously reflected in enhanced benthic fluxes due to higher temperature. The role of benthic biological advection in this transport across the sediment-water interface, evaluated by comparison between measured benthic and calculated diffusive fluxes from nutrient pore water concentrations, was of minor importance. This is probably due to low infaunal activity throughout the year it was localized mostly in the narrow surficial layer. The annual average diffusive fluxes of NH4 and PO4 were higher than those measured, probably due to the presence of nitrificationdenitrifi-cation processes and redox-dependent chemical reactions at the oxic sediment-water interface, respectively. Only during bottom-water hypoxia in September 1993 did strong PO4 effluxes prevail. Calculations based on the Redfield stoichiometry of oxic decomposition of organic N to NH4 and NO3, and differences between diffusive and measured NH4 fluxes showed that denitrifkation averaged 0.8 mmol m-2 d-1. Significant correlations between NH4 and PO4 DIC and Si, and NH4 and Si fluxes suggested their parallel regeneration and utilization at the sediment-water interface. The nutrient fluxes observed were not significantly linked to O2 consumption, suggesting also that anaerobic oxidation processes were important at the sediment-water interface in the gulf. The N, P and Si nutriqnts released from sediment pore waters are probably utilized in benthic microalgal and bottorn-hater primary production. This indicates that pelagic and benthic communities in the central part of the Gulf of Trieste function relatively independently of each other.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号